Abstract

This Letter treats the scattering of electromagnetic waves by an electrically charged spherical particle in near-field approximation. Particular attention is paid to the external intensity distribution at the outer edges of the particle. The difference between scattering by a charged sphere and an electrically neutral sphere is significant only when size parameters exceed unity.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Lorenz, Det Kongelige Danske Videnskabernes Selskabs Skrifter 6. Raekke, 6. Bind, 1 (1890).
  2. G. Mie, Ann. Phys. 330, 377 (1908).
    [CrossRef]
  3. N. Logan, Proc. IEEE 53, 773 (1965).
    [CrossRef]
  4. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).
  5. C. F. Bohren and A. J. Hunt, Can. J. Phys. 55, 1930 (1977).
    [CrossRef]
  6. J. Klačka and M. Kocifaj, J. Quant. Spectrosc. Radiat. Transfer 106, 170 (2007).
    [CrossRef]
  7. A. Heifetz, H. T. Chien, S. Liao, N. S. Gopalsami, and A. C. P. Raptis, J. Quant. Spectrosc. Radiat. Transfer 111, 2550 (2010).
    [CrossRef]
  8. E. Rosenkrantz and S. Arnon, Opt. Lett. 35, 1178 (2010).
    [CrossRef]
  9. Q. F. Dong and J. D. Xu, J. Electromagn. Waves Appl. 25, 315 (2011).
    [CrossRef]
  10. X. Li, L. Xie, and X. Zheng, J. Quant. Spectrosc. Radiat. Transfer 113, 251 (2012).
    [CrossRef]
  11. P. W. Barber and C. S. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1998).

2012 (1)

X. Li, L. Xie, and X. Zheng, J. Quant. Spectrosc. Radiat. Transfer 113, 251 (2012).
[CrossRef]

2011 (1)

Q. F. Dong and J. D. Xu, J. Electromagn. Waves Appl. 25, 315 (2011).
[CrossRef]

2010 (2)

A. Heifetz, H. T. Chien, S. Liao, N. S. Gopalsami, and A. C. P. Raptis, J. Quant. Spectrosc. Radiat. Transfer 111, 2550 (2010).
[CrossRef]

E. Rosenkrantz and S. Arnon, Opt. Lett. 35, 1178 (2010).
[CrossRef]

2007 (1)

J. Klačka and M. Kocifaj, J. Quant. Spectrosc. Radiat. Transfer 106, 170 (2007).
[CrossRef]

1977 (1)

C. F. Bohren and A. J. Hunt, Can. J. Phys. 55, 1930 (1977).
[CrossRef]

1965 (1)

N. Logan, Proc. IEEE 53, 773 (1965).
[CrossRef]

1908 (1)

G. Mie, Ann. Phys. 330, 377 (1908).
[CrossRef]

1890 (1)

L. Lorenz, Det Kongelige Danske Videnskabernes Selskabs Skrifter 6. Raekke, 6. Bind, 1 (1890).

Arnon, S.

Barber, P. W.

P. W. Barber and C. S. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1998).

Bohren, C. F.

C. F. Bohren and A. J. Hunt, Can. J. Phys. 55, 1930 (1977).
[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).

Chien, H. T.

A. Heifetz, H. T. Chien, S. Liao, N. S. Gopalsami, and A. C. P. Raptis, J. Quant. Spectrosc. Radiat. Transfer 111, 2550 (2010).
[CrossRef]

Dong, Q. F.

Q. F. Dong and J. D. Xu, J. Electromagn. Waves Appl. 25, 315 (2011).
[CrossRef]

Gopalsami, N. S.

A. Heifetz, H. T. Chien, S. Liao, N. S. Gopalsami, and A. C. P. Raptis, J. Quant. Spectrosc. Radiat. Transfer 111, 2550 (2010).
[CrossRef]

Heifetz, A.

A. Heifetz, H. T. Chien, S. Liao, N. S. Gopalsami, and A. C. P. Raptis, J. Quant. Spectrosc. Radiat. Transfer 111, 2550 (2010).
[CrossRef]

Hill, C. S.

P. W. Barber and C. S. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1998).

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).

Hunt, A. J.

C. F. Bohren and A. J. Hunt, Can. J. Phys. 55, 1930 (1977).
[CrossRef]

Klacka, J.

J. Klačka and M. Kocifaj, J. Quant. Spectrosc. Radiat. Transfer 106, 170 (2007).
[CrossRef]

Kocifaj, M.

J. Klačka and M. Kocifaj, J. Quant. Spectrosc. Radiat. Transfer 106, 170 (2007).
[CrossRef]

Li, X.

X. Li, L. Xie, and X. Zheng, J. Quant. Spectrosc. Radiat. Transfer 113, 251 (2012).
[CrossRef]

Liao, S.

A. Heifetz, H. T. Chien, S. Liao, N. S. Gopalsami, and A. C. P. Raptis, J. Quant. Spectrosc. Radiat. Transfer 111, 2550 (2010).
[CrossRef]

Logan, N.

N. Logan, Proc. IEEE 53, 773 (1965).
[CrossRef]

Lorenz, L.

L. Lorenz, Det Kongelige Danske Videnskabernes Selskabs Skrifter 6. Raekke, 6. Bind, 1 (1890).

Mie, G.

G. Mie, Ann. Phys. 330, 377 (1908).
[CrossRef]

Raptis, A. C. P.

A. Heifetz, H. T. Chien, S. Liao, N. S. Gopalsami, and A. C. P. Raptis, J. Quant. Spectrosc. Radiat. Transfer 111, 2550 (2010).
[CrossRef]

Rosenkrantz, E.

Xie, L.

X. Li, L. Xie, and X. Zheng, J. Quant. Spectrosc. Radiat. Transfer 113, 251 (2012).
[CrossRef]

Xu, J. D.

Q. F. Dong and J. D. Xu, J. Electromagn. Waves Appl. 25, 315 (2011).
[CrossRef]

Zheng, X.

X. Li, L. Xie, and X. Zheng, J. Quant. Spectrosc. Radiat. Transfer 113, 251 (2012).
[CrossRef]

Ann. Phys. (1)

G. Mie, Ann. Phys. 330, 377 (1908).
[CrossRef]

Can. J. Phys. (1)

C. F. Bohren and A. J. Hunt, Can. J. Phys. 55, 1930 (1977).
[CrossRef]

Det Kongelige Danske Videnskabernes Selskabs Skrifter (1)

L. Lorenz, Det Kongelige Danske Videnskabernes Selskabs Skrifter 6. Raekke, 6. Bind, 1 (1890).

J. Electromagn. Waves Appl. (1)

Q. F. Dong and J. D. Xu, J. Electromagn. Waves Appl. 25, 315 (2011).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (3)

X. Li, L. Xie, and X. Zheng, J. Quant. Spectrosc. Radiat. Transfer 113, 251 (2012).
[CrossRef]

J. Klačka and M. Kocifaj, J. Quant. Spectrosc. Radiat. Transfer 106, 170 (2007).
[CrossRef]

A. Heifetz, H. T. Chien, S. Liao, N. S. Gopalsami, and A. C. P. Raptis, J. Quant. Spectrosc. Radiat. Transfer 111, 2550 (2010).
[CrossRef]

Opt. Lett. (1)

Proc. IEEE (1)

N. Logan, Proc. IEEE 53, 773 (1965).
[CrossRef]

Other (2)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).

P. W. Barber and C. S. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Near-field intensities I=E×E* normalized to maximum value IMAX (in percentage). The incident beam has parallel polarization, and the amplitude of the incident electric field E is set to unity. Input parameters are as follows: λ=0.628μm, x=1 (i.e., R=0.1μm), Φ=5V, T=300K, m=1.33+1×106i, g=9.8×106+1.3×107i. Left panel: Neutral particle; IMAX=2.4V2m2. Right panel: Charged particle occupied by 3.5×102 electrons on its surface; IMAX=10V2m2.

Fig. 2.
Fig. 2.

Same as in Fig. 1, but for the size parameter x=10 (i.e., R=1μm). Left panel: IMAX=30.3V2m2. Right panel: IMAX=3.1V2m2, 3.5×103 electrons on the particle surface, and g=9.8×107+1.3×108i.

Fig. 3.
Fig. 3.

Same as in Fig. 1, but for the size parameter x=100 (i.e., R=10μm). Left panel: IMAX=474.6V2m2. Right panel: IMAX=3.4V2m2, 3.5×104 electrons on the particle surface, and g=9.8×108+1.3×109i.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

fo1n=in2n(n+1)Xfn,
Xfn=[mAn+(1gx/n)n/x]jn(x)jn1(x)[mAn+(1gx/n)n/x]hn(1)(x)hn1(1)(x),
ge1n=in+12n(n+1)Xgn,
Xgn=[(1+ngx)Anm+nx]jn(x)(1+gAnm)jn1(x)[(1+ngx)Anm+nx]hn(1)(x)(1+gAnm)hn1(1)(x).
g=x2ωs2ω2+γs2(1+iγsω),
ωs2=2emeΦR2,
γskBT.
[(1+ngx)Dn(mx)m+nx]ξn(x)=[1+Dn(mx)gm]ξn1(x),Dn(mx)=ψn1(mx)ψn(mx)nmx,

Metrics