Abstract

The problem of retrieving a complex function from the modulus of its Fourier transform has non-unique solutions in one dimension. Therefore iterative phase retrieval methods cannot in general be confidently applied to one-dimensional problems, due to the presence of ambiguities. We present a method for a posteriori reduction of the ambiguities based on the correlation analysis of the solution of a large number of runs of an iterative phase retrieval algorithm with different random starting phases. The method is applied to experimentally measured diffraction patterns from an x ray waveguide illuminated by hard x rays. We demonstrate the possibility of retrieving the complex wave field at the exit face of the waveguide and compare the result with theoretical prediction.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription