Abstract

We propose a new direct writing nanolithography approach using a plasmonic focusing device and a nano silver mirror with dual-wavelength illumination for high exposure depth. Arrays of pyramid aperture are used to focus the incident light beams into 80 nm light spots. The pyramid combined with a thin silver film coated on the substrate constructs a surface plasmon polaritons (SPP) coupling cavity, which amplifies the intensity of the light field in it by SPP effect and resonance. The transmission depth of the standing wave formed by forward and reflected light could reach hundreds of nanometers. Two lasers with different wavelengths are used as illumination sources to homogenize the light field through complementation between the two standing waves. Simulation results show by using 355 nm and 441 nm wavelengths, a space of 44 nm at the bottom of the photoresist could be obtained after exposure and development. The feature size of resist patterns could be further scaled down, depending on the optimization of parameters of photoresist exposure and development, illumination wavelengths, etc.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, Microelectron. Eng. 83, 956 (2006).
    [CrossRef]
  2. Y. Kim, S. Kim, H. Jung, E. Lee, and J. W. Hahn, Opt. Express 17, 19476 (2009).
    [CrossRef]
  3. E. McLeod and C. B. Arnold, Opt. Express 17, 3640 (2009).
    [CrossRef]
  4. Z. H. Xie, W. X. Yu, T. S. Wang, H. X. Zhang, Y. Q. Fu, H. Liu, F. Y. Li, Z. W. Lu, and Q. Sun, Plasmonics 6, 565 (2011).
    [CrossRef]
  5. S. M. V. Uppuluri, E. C. Kinzel, Y. Li, and X. F. Xu, Opt. Express 18, 7369 (2010).
    [CrossRef]
  6. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, Nat. Nanotechnol. 3, 733 (2008).
    [CrossRef]
  7. S. Shi, Z. Y. Zhang, R. Y. Shi, X. Y. Niu, S. H. Li, M. Li, J. Q. Wang, J. L. Du, F. H. Gao, and C. L. Du, Microelectron. Eng. 88, 1931 (2011).
    [CrossRef]
  8. D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and Xiang Zhang, Phys. Rev. 75, 035431 (2007).
    [CrossRef]
  9. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
    [CrossRef]
  10. P. Mehrotra, C. W. Holzwarth, and R. J. Blaikie, Proc. SPIE 7970, 79701L (2011).
    [CrossRef]
  11. M. D. Arnold and R. J. Blaikie, Opt. Express 15, 11542 (2007).
    [CrossRef]
  12. R. J. Blaikie, M. M. Alkaisi, S. J. Mcnab, and D. O. S. Melville, International Journal of Nanoscience 3, 405 (2004).
  13. C. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabricaion (Wiley, 2007).

2011 (3)

Z. H. Xie, W. X. Yu, T. S. Wang, H. X. Zhang, Y. Q. Fu, H. Liu, F. Y. Li, Z. W. Lu, and Q. Sun, Plasmonics 6, 565 (2011).
[CrossRef]

S. Shi, Z. Y. Zhang, R. Y. Shi, X. Y. Niu, S. H. Li, M. Li, J. Q. Wang, J. L. Du, F. H. Gao, and C. L. Du, Microelectron. Eng. 88, 1931 (2011).
[CrossRef]

P. Mehrotra, C. W. Holzwarth, and R. J. Blaikie, Proc. SPIE 7970, 79701L (2011).
[CrossRef]

2010 (1)

2009 (2)

2008 (1)

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, Nat. Nanotechnol. 3, 733 (2008).
[CrossRef]

2007 (2)

M. D. Arnold and R. J. Blaikie, Opt. Express 15, 11542 (2007).
[CrossRef]

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and Xiang Zhang, Phys. Rev. 75, 035431 (2007).
[CrossRef]

2006 (1)

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, Microelectron. Eng. 83, 956 (2006).
[CrossRef]

2004 (1)

R. J. Blaikie, M. M. Alkaisi, S. J. Mcnab, and D. O. S. Melville, International Journal of Nanoscience 3, 405 (2004).

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Alkaisi, M. M.

R. J. Blaikie, M. M. Alkaisi, S. J. Mcnab, and D. O. S. Melville, International Journal of Nanoscience 3, 405 (2004).

Arnold, C. B.

Arnold, M. D.

Barbastathis, G.

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, Microelectron. Eng. 83, 956 (2006).
[CrossRef]

Blaikie, R. J.

P. Mehrotra, C. W. Holzwarth, and R. J. Blaikie, Proc. SPIE 7970, 79701L (2011).
[CrossRef]

M. D. Arnold and R. J. Blaikie, Opt. Express 15, 11542 (2007).
[CrossRef]

R. J. Blaikie, M. M. Alkaisi, S. J. Mcnab, and D. O. S. Melville, International Journal of Nanoscience 3, 405 (2004).

Bogy, D. B.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, Nat. Nanotechnol. 3, 733 (2008).
[CrossRef]

Chao, D.

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, Microelectron. Eng. 83, 956 (2006).
[CrossRef]

Du, C. L.

S. Shi, Z. Y. Zhang, R. Y. Shi, X. Y. Niu, S. H. Li, M. Li, J. Q. Wang, J. L. Du, F. H. Gao, and C. L. Du, Microelectron. Eng. 88, 1931 (2011).
[CrossRef]

Du, J. L.

S. Shi, Z. Y. Zhang, R. Y. Shi, X. Y. Niu, S. H. Li, M. Li, J. Q. Wang, J. L. Du, F. H. Gao, and C. L. Du, Microelectron. Eng. 88, 1931 (2011).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Fu, Y. Q.

Z. H. Xie, W. X. Yu, T. S. Wang, H. X. Zhang, Y. Q. Fu, H. Liu, F. Y. Li, Z. W. Lu, and Q. Sun, Plasmonics 6, 565 (2011).
[CrossRef]

Gao, F. H.

S. Shi, Z. Y. Zhang, R. Y. Shi, X. Y. Niu, S. H. Li, M. Li, J. Q. Wang, J. L. Du, F. H. Gao, and C. L. Du, Microelectron. Eng. 88, 1931 (2011).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and Xiang Zhang, Phys. Rev. 75, 035431 (2007).
[CrossRef]

Hahn, J. W.

Holzwarth, C. W.

P. Mehrotra, C. W. Holzwarth, and R. J. Blaikie, Proc. SPIE 7970, 79701L (2011).
[CrossRef]

Jung, H.

Kim, S.

Kim, Y.

Kinzel, E. C.

Lee, E.

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Li, F. Y.

Z. H. Xie, W. X. Yu, T. S. Wang, H. X. Zhang, Y. Q. Fu, H. Liu, F. Y. Li, Z. W. Lu, and Q. Sun, Plasmonics 6, 565 (2011).
[CrossRef]

Li, M.

S. Shi, Z. Y. Zhang, R. Y. Shi, X. Y. Niu, S. H. Li, M. Li, J. Q. Wang, J. L. Du, F. H. Gao, and C. L. Du, Microelectron. Eng. 88, 1931 (2011).
[CrossRef]

Li, S. H.

S. Shi, Z. Y. Zhang, R. Y. Shi, X. Y. Niu, S. H. Li, M. Li, J. Q. Wang, J. L. Du, F. H. Gao, and C. L. Du, Microelectron. Eng. 88, 1931 (2011).
[CrossRef]

Li, Y.

Liu, H.

Z. H. Xie, W. X. Yu, T. S. Wang, H. X. Zhang, Y. Q. Fu, H. Liu, F. Y. Li, Z. W. Lu, and Q. Sun, Plasmonics 6, 565 (2011).
[CrossRef]

Lu, Z. W.

Z. H. Xie, W. X. Yu, T. S. Wang, H. X. Zhang, Y. Q. Fu, H. Liu, F. Y. Li, Z. W. Lu, and Q. Sun, Plasmonics 6, 565 (2011).
[CrossRef]

Mack, C.

C. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabricaion (Wiley, 2007).

McLeod, E.

Mcnab, S. J.

R. J. Blaikie, M. M. Alkaisi, S. J. Mcnab, and D. O. S. Melville, International Journal of Nanoscience 3, 405 (2004).

Mehrotra, P.

P. Mehrotra, C. W. Holzwarth, and R. J. Blaikie, Proc. SPIE 7970, 79701L (2011).
[CrossRef]

Melville, D. O. S.

R. J. Blaikie, M. M. Alkaisi, S. J. Mcnab, and D. O. S. Melville, International Journal of Nanoscience 3, 405 (2004).

Menon, R.

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, Microelectron. Eng. 83, 956 (2006).
[CrossRef]

Niu, X. Y.

S. Shi, Z. Y. Zhang, R. Y. Shi, X. Y. Niu, S. H. Li, M. Li, J. Q. Wang, J. L. Du, F. H. Gao, and C. L. Du, Microelectron. Eng. 88, 1931 (2011).
[CrossRef]

Pan, L.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, Nat. Nanotechnol. 3, 733 (2008).
[CrossRef]

Patel, A.

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, Microelectron. Eng. 83, 956 (2006).
[CrossRef]

Pile, D. F. P.

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and Xiang Zhang, Phys. Rev. 75, 035431 (2007).
[CrossRef]

Shi, R. Y.

S. Shi, Z. Y. Zhang, R. Y. Shi, X. Y. Niu, S. H. Li, M. Li, J. Q. Wang, J. L. Du, F. H. Gao, and C. L. Du, Microelectron. Eng. 88, 1931 (2011).
[CrossRef]

Shi, S.

S. Shi, Z. Y. Zhang, R. Y. Shi, X. Y. Niu, S. H. Li, M. Li, J. Q. Wang, J. L. Du, F. H. Gao, and C. L. Du, Microelectron. Eng. 88, 1931 (2011).
[CrossRef]

Smith, H. I.

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, Microelectron. Eng. 83, 956 (2006).
[CrossRef]

Srituravanich, W.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, Nat. Nanotechnol. 3, 733 (2008).
[CrossRef]

Sun, C.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, Nat. Nanotechnol. 3, 733 (2008).
[CrossRef]

Sun, Q.

Z. H. Xie, W. X. Yu, T. S. Wang, H. X. Zhang, Y. Q. Fu, H. Liu, F. Y. Li, Z. W. Lu, and Q. Sun, Plasmonics 6, 565 (2011).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Uppuluri, S. M. V.

Vogel, M. W.

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and Xiang Zhang, Phys. Rev. 75, 035431 (2007).
[CrossRef]

Walsh, M.

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, Microelectron. Eng. 83, 956 (2006).
[CrossRef]

Wang, J. Q.

S. Shi, Z. Y. Zhang, R. Y. Shi, X. Y. Niu, S. H. Li, M. Li, J. Q. Wang, J. L. Du, F. H. Gao, and C. L. Du, Microelectron. Eng. 88, 1931 (2011).
[CrossRef]

Wang, T. S.

Z. H. Xie, W. X. Yu, T. S. Wang, H. X. Zhang, Y. Q. Fu, H. Liu, F. Y. Li, Z. W. Lu, and Q. Sun, Plasmonics 6, 565 (2011).
[CrossRef]

Wang, Y.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, Nat. Nanotechnol. 3, 733 (2008).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Xie, Z. H.

Z. H. Xie, W. X. Yu, T. S. Wang, H. X. Zhang, Y. Q. Fu, H. Liu, F. Y. Li, Z. W. Lu, and Q. Sun, Plasmonics 6, 565 (2011).
[CrossRef]

Xu, X. F.

Yu, W. X.

Z. H. Xie, W. X. Yu, T. S. Wang, H. X. Zhang, Y. Q. Fu, H. Liu, F. Y. Li, Z. W. Lu, and Q. Sun, Plasmonics 6, 565 (2011).
[CrossRef]

Zhang, H. X.

Z. H. Xie, W. X. Yu, T. S. Wang, H. X. Zhang, Y. Q. Fu, H. Liu, F. Y. Li, Z. W. Lu, and Q. Sun, Plasmonics 6, 565 (2011).
[CrossRef]

Zhang, X.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, Nat. Nanotechnol. 3, 733 (2008).
[CrossRef]

Zhang, Xiang

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and Xiang Zhang, Phys. Rev. 75, 035431 (2007).
[CrossRef]

Zhang, Z. Y.

S. Shi, Z. Y. Zhang, R. Y. Shi, X. Y. Niu, S. H. Li, M. Li, J. Q. Wang, J. L. Du, F. H. Gao, and C. L. Du, Microelectron. Eng. 88, 1931 (2011).
[CrossRef]

International Journal of Nanoscience (1)

R. J. Blaikie, M. M. Alkaisi, S. J. Mcnab, and D. O. S. Melville, International Journal of Nanoscience 3, 405 (2004).

Microelectron. Eng. (2)

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, Microelectron. Eng. 83, 956 (2006).
[CrossRef]

S. Shi, Z. Y. Zhang, R. Y. Shi, X. Y. Niu, S. H. Li, M. Li, J. Q. Wang, J. L. Du, F. H. Gao, and C. L. Du, Microelectron. Eng. 88, 1931 (2011).
[CrossRef]

Nat. Nanotechnol. (1)

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, Nat. Nanotechnol. 3, 733 (2008).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Opt. Express (4)

Phys. Rev. (1)

D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and Xiang Zhang, Phys. Rev. 75, 035431 (2007).
[CrossRef]

Plasmonics (1)

Z. H. Xie, W. X. Yu, T. S. Wang, H. X. Zhang, Y. Q. Fu, H. Liu, F. Y. Li, Z. W. Lu, and Q. Sun, Plasmonics 6, 565 (2011).
[CrossRef]

Proc. SPIE (1)

P. Mehrotra, C. W. Holzwarth, and R. J. Blaikie, Proc. SPIE 7970, 79701L (2011).
[CrossRef]

Other (1)

C. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabricaion (Wiley, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic of the plasmonic direct writing system constructed by two lasers with different wavelengths as the illumination source, the SLM and the plasmonic focusing device. (b) Structure of the plasmonic focusing device containing arrays of inverted pyramid silver apertures. (c) Structure of the inverted pyramid silver aperture.

Fig. 2.
Fig. 2.

The incident wavelength is 355 nm, and the refractive index of the photoresist is 1.73+0.0216i. (a) Light field in the zone between the plasmonic focusing device and the bare substrate. (b) Light field in the zone between the plasmonic focusing device and the substrate coated with a silver film. (c) Relationship between |E|2 on the center axis and depth (z). Curve a and curve b correspond to Figs. (a) and (b), respectively. The scale in z and x direction is about 31.

Fig. 3.
Fig. 3.

Light field in the zone between the plasmonic focusing device and the substrate. The incident wavelength is (a) 248 nm, (b) 355 nm, and (c) 441 nm, respectively. Refractive index of the photoresist is (a) 1.75+0.02i, (b) 1.73+0.0216i, and (c) 1.69+0.0197i. (d) Superposed light field formed by 355 nm and 441 nm wavelength. The scale in z and x direction is about 31.

Fig. 4.
Fig. 4.

(a) PAC distribution in the photoresist. C1=0.024 and C2=0.02 for 335 nm and 441 nm, respectively. k=0.8 and exposure time is 20 s. (b) Profile of the photoresist after development. For AR 3170 photoresist, Rmax=40.7nm/s, Rmin=0.5nm/s, Mth=0.068, and n=7.9. Development time is 55 s. The scale in z and x direction is about 51.

Fig. 5.
Fig. 5.

Relationship between the feature size of the space, the optimum development time, and the thickness of the photoresist.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

M=exp(I1C1tI2C2t),
R=Rmax(a+1)(1M)n/[a+(1M)n]+Rmin,
a=(1Mth)n(n+1)/(n1),

Metrics