Abstract

A counterpropagating phase-matching geometry is employed for high-spatial-resolution one-dimensional (1D) imaging of temperature and O2-to-N2 concentration ratio using picosecond pure-rotational coherent anti-Stokes Raman spectroscopy (RCARS) over a large field (20 mm). A single-shot 1D RCARS image of more than 20 mm in length is thus acquired at 300 K in air. High-resolution 1D RCARS flame measurements are demonstrated using a custom-built burner and a premixed methane/air flame (Φ=0.6). This phase-matching scheme improves the spatial resolution by approximately 1 order of magnitude when compared to the standard small-angle BOXCARS phase-matching schemes typically employed in CARS measurements. Additionally, for a 20 mm 1D image, signal levels are increased by 102 because of the higher irradiance provided in the current scheme.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, 1996).
  2. S. Roy, J. R. Gord, and A. K. Patnaik, Prog. Energy Combust. Sci. 36, 280 (2010).
    [CrossRef]
  3. A. C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978).
    [CrossRef]
  4. D. V. Murphy, M. B. Long, R. K. Chang, and A. C. Eckbreth, Opt. Lett. 4, 167 (1979).
    [CrossRef]
  5. C. J. Kliewer, Y. Gao, T. Seeger, B. D. Patterson, R. L. Farrow, and T. B. Settersten, Appl. Opt. 50, 1770 (2011).
    [CrossRef]
  6. D. Stepowski, Opt. Commun. 80, 95 (1990).
    [CrossRef]
  7. T. R. Meyer, S. Roy, and J. R. Gord, Appl. Spectrosc. 61, 1135 (2007).
    [CrossRef]
  8. S. Roy, T. R. Meyer, and J. R. Gord, Appl. Phys. Lett. 87 (2005).
    [CrossRef]
  9. T. Seeger, J. Kiefer, A. Leipertz, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, Opt. Lett. 34, 3755 (2009).
    [CrossRef]
  10. T. Seeger, J. Kiefer, Y. Gao, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, Opt. Lett. 35, 2040 (2010).
    [CrossRef]
  11. C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, Proc. Combust. Inst. 33, 831 (2011).
    [CrossRef]
  12. J. Jonuscheit, A. Thumann, M. Schenk, T. Seeger, and A. Leipertz, Appl. Opt. 36, 3253 (1997).
    [CrossRef]

2011 (2)

C. J. Kliewer, Y. Gao, T. Seeger, B. D. Patterson, R. L. Farrow, and T. B. Settersten, Appl. Opt. 50, 1770 (2011).
[CrossRef]

C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, Proc. Combust. Inst. 33, 831 (2011).
[CrossRef]

2010 (2)

2009 (1)

2007 (1)

2005 (1)

S. Roy, T. R. Meyer, and J. R. Gord, Appl. Phys. Lett. 87 (2005).
[CrossRef]

1997 (1)

1990 (1)

D. Stepowski, Opt. Commun. 80, 95 (1990).
[CrossRef]

1979 (1)

1978 (1)

A. C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978).
[CrossRef]

Chang, R. K.

Eckbreth, A. C.

D. V. Murphy, M. B. Long, R. K. Chang, and A. C. Eckbreth, Opt. Lett. 4, 167 (1979).
[CrossRef]

A. C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978).
[CrossRef]

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, 1996).

Farrow, R. L.

Gao, Y.

Gord, J. R.

S. Roy, J. R. Gord, and A. K. Patnaik, Prog. Energy Combust. Sci. 36, 280 (2010).
[CrossRef]

T. R. Meyer, S. Roy, and J. R. Gord, Appl. Spectrosc. 61, 1135 (2007).
[CrossRef]

S. Roy, T. R. Meyer, and J. R. Gord, Appl. Phys. Lett. 87 (2005).
[CrossRef]

Jonuscheit, J.

Kiefer, J.

Kliewer, C. J.

Leipertz, A.

Long, M. B.

Meyer, T. R.

T. R. Meyer, S. Roy, and J. R. Gord, Appl. Spectrosc. 61, 1135 (2007).
[CrossRef]

S. Roy, T. R. Meyer, and J. R. Gord, Appl. Phys. Lett. 87 (2005).
[CrossRef]

Murphy, D. V.

Patnaik, A. K.

S. Roy, J. R. Gord, and A. K. Patnaik, Prog. Energy Combust. Sci. 36, 280 (2010).
[CrossRef]

Patterson, B. D.

Roy, S.

S. Roy, J. R. Gord, and A. K. Patnaik, Prog. Energy Combust. Sci. 36, 280 (2010).
[CrossRef]

T. R. Meyer, S. Roy, and J. R. Gord, Appl. Spectrosc. 61, 1135 (2007).
[CrossRef]

S. Roy, T. R. Meyer, and J. R. Gord, Appl. Phys. Lett. 87 (2005).
[CrossRef]

Schenk, M.

Seeger, T.

Settersten, T. B.

Stepowski, D.

D. Stepowski, Opt. Commun. 80, 95 (1990).
[CrossRef]

Thumann, A.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

A. C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978).
[CrossRef]

S. Roy, T. R. Meyer, and J. R. Gord, Appl. Phys. Lett. 87 (2005).
[CrossRef]

Appl. Spectrosc. (1)

Opt. Commun. (1)

D. Stepowski, Opt. Commun. 80, 95 (1990).
[CrossRef]

Opt. Lett. (3)

Proc. Combust. Inst. (1)

C. J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B. D. Patterson, and T. B. Settersten, Proc. Combust. Inst. 33, 831 (2011).
[CrossRef]

Prog. Energy Combust. Sci. (1)

S. Roy, J. R. Gord, and A. K. Patnaik, Prog. Energy Combust. Sci. 36, 280 (2010).
[CrossRef]

Other (1)

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon and Breach, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Phase-matching scheme used in this work and (b) a top-down view of the experimental layout around the probe volume.

Fig. 2.
Fig. 2.

Single-shot high spatial resolution 1D RCARS image from room temperature air. The usable imaged field is 20mm in length.

Fig. 3.
Fig. 3.

Custom burner with lean premixed methane/air flame (Φ=0.6). Shown in red are the counterpropagating collinear pump and Stokes beams, focused to a point. Intersecting this line is the 532 nm coplanar probe sheet.

Fig. 4.
Fig. 4.

(a) High-resolution 1D RCARS image from a line across the methane nozzle burner with 100 laser shots. Several flame fronts are crossed in the image. (b) Temperature and O2/N2 ratio profiles.

Metrics