Abstract

We demonstrate experimentally that, in a tight focusing geometry, circularly polarized femtosecond laser vortex pulses ablate material differently depending on the handedness of light. This effect offers an additional degree of freedom to control the shape and size of laser-machined structures on a subwavelength scale.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. Joglekar, H.-H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, Proc. Natl. Acad. Sci. USA 101, 5856 (2004).
    [CrossRef]
  2. P. Zijlstra, J. W. M. Chon, and M. Gu, Nature 459, 410 (2009).
    [CrossRef]
  3. K. Ke, E. F. Hasselbrink, and A. J. Hunt, Anal. Chem. 77, 5083 (2005).
    [CrossRef]
  4. N. Shen, D. Datta, Ch. B. Schaffer, Ph. LeDuc, D. E. Ingber, and E. Mazur, Mech. Chem. Biosyst. 2, 17 (2005).
  5. A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, Nat. Commun. 2, 1 (2011).
    [CrossRef]
  6. M. Gu, Advanced Optical Imaging Theory (Springer, 2000).
  7. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef]
  8. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
    [CrossRef]
  9. N. Hayazawa, Y. Saito, and S. Kawata, Appl. Phys. Lett. 85, 6239 (2004).
    [CrossRef]
  10. D. P. Biss and T. G. Brown, Opt. Lett. 28, 923 (2003).
    [CrossRef]
  11. M. Padgett and R. Bowman, Nat. Photon. 5, 343 (2011).
    [CrossRef]
  12. B. Jia, H. Kang, J. Li, and M. Gu, Opt. Lett. 34, 1918 (2009).
    [CrossRef]
  13. C. Hnatovsky, V. G. Shvedov, W. Krolikowski, and A. V. Rode, Opt. Lett. 35, 3417 (2010).
    [CrossRef]
  14. C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, Phys. Rev. Lett. 106, 123901 (2011).
    [CrossRef]
  15. P. Török and P. R. T. Munro, Opt. Express 12, 3605(2004).
    [CrossRef]
  16. K. M. Romallosa, J. Bantang, and C. Saloma, Phys. Rev. A 68, 033812 (2003).
    [CrossRef]
  17. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, Appl. Phys. A 74, 19 (2002).
    [CrossRef]

2011 (3)

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, Nat. Commun. 2, 1 (2011).
[CrossRef]

M. Padgett and R. Bowman, Nat. Photon. 5, 343 (2011).
[CrossRef]

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, Phys. Rev. Lett. 106, 123901 (2011).
[CrossRef]

2010 (1)

2009 (2)

B. Jia, H. Kang, J. Li, and M. Gu, Opt. Lett. 34, 1918 (2009).
[CrossRef]

P. Zijlstra, J. W. M. Chon, and M. Gu, Nature 459, 410 (2009).
[CrossRef]

2005 (2)

K. Ke, E. F. Hasselbrink, and A. J. Hunt, Anal. Chem. 77, 5083 (2005).
[CrossRef]

N. Shen, D. Datta, Ch. B. Schaffer, Ph. LeDuc, D. E. Ingber, and E. Mazur, Mech. Chem. Biosyst. 2, 17 (2005).

2004 (3)

A. P. Joglekar, H.-H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, Proc. Natl. Acad. Sci. USA 101, 5856 (2004).
[CrossRef]

N. Hayazawa, Y. Saito, and S. Kawata, Appl. Phys. Lett. 85, 6239 (2004).
[CrossRef]

P. Török and P. R. T. Munro, Opt. Express 12, 3605(2004).
[CrossRef]

2003 (3)

D. P. Biss and T. G. Brown, Opt. Lett. 28, 923 (2003).
[CrossRef]

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

K. M. Romallosa, J. Bantang, and C. Saloma, Phys. Rev. A 68, 033812 (2003).
[CrossRef]

2002 (1)

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, Appl. Phys. A 74, 19 (2002).
[CrossRef]

2001 (1)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef]

Bantang, J.

K. M. Romallosa, J. Bantang, and C. Saloma, Phys. Rev. A 68, 033812 (2003).
[CrossRef]

Baudach, S.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, Appl. Phys. A 74, 19 (2002).
[CrossRef]

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef]

Biss, D. P.

Bonse, J.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, Appl. Phys. A 74, 19 (2002).
[CrossRef]

Bowman, R.

M. Padgett and R. Bowman, Nat. Photon. 5, 343 (2011).
[CrossRef]

Brown, T. G.

D. P. Biss and T. G. Brown, Opt. Lett. 28, 923 (2003).
[CrossRef]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef]

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, Nature 459, 410 (2009).
[CrossRef]

Datta, D.

N. Shen, D. Datta, Ch. B. Schaffer, Ph. LeDuc, D. E. Ingber, and E. Mazur, Mech. Chem. Biosyst. 2, 17 (2005).

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

Gamaly, E. G.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, Nat. Commun. 2, 1 (2011).
[CrossRef]

Gu, M.

P. Zijlstra, J. W. M. Chon, and M. Gu, Nature 459, 410 (2009).
[CrossRef]

B. Jia, H. Kang, J. Li, and M. Gu, Opt. Lett. 34, 1918 (2009).
[CrossRef]

M. Gu, Advanced Optical Imaging Theory (Springer, 2000).

Hasselbrink, E. F.

K. Ke, E. F. Hasselbrink, and A. J. Hunt, Anal. Chem. 77, 5083 (2005).
[CrossRef]

Hayazawa, N.

N. Hayazawa, Y. Saito, and S. Kawata, Appl. Phys. Lett. 85, 6239 (2004).
[CrossRef]

Hnatovsky, C.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, Phys. Rev. Lett. 106, 123901 (2011).
[CrossRef]

C. Hnatovsky, V. G. Shvedov, W. Krolikowski, and A. V. Rode, Opt. Lett. 35, 3417 (2010).
[CrossRef]

Hunt, A. J.

K. Ke, E. F. Hasselbrink, and A. J. Hunt, Anal. Chem. 77, 5083 (2005).
[CrossRef]

A. P. Joglekar, H.-H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, Proc. Natl. Acad. Sci. USA 101, 5856 (2004).
[CrossRef]

Ingber, D. E.

N. Shen, D. Datta, Ch. B. Schaffer, Ph. LeDuc, D. E. Ingber, and E. Mazur, Mech. Chem. Biosyst. 2, 17 (2005).

Jia, B.

Joglekar, A. P.

A. P. Joglekar, H.-H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, Proc. Natl. Acad. Sci. USA 101, 5856 (2004).
[CrossRef]

Juodkazis, S.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, Nat. Commun. 2, 1 (2011).
[CrossRef]

Kang, H.

Kautek, W.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, Appl. Phys. A 74, 19 (2002).
[CrossRef]

Kawata, S.

N. Hayazawa, Y. Saito, and S. Kawata, Appl. Phys. Lett. 85, 6239 (2004).
[CrossRef]

Ke, K.

K. Ke, E. F. Hasselbrink, and A. J. Hunt, Anal. Chem. 77, 5083 (2005).
[CrossRef]

Krolikowski, W.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, Phys. Rev. Lett. 106, 123901 (2011).
[CrossRef]

C. Hnatovsky, V. G. Shvedov, W. Krolikowski, and A. V. Rode, Opt. Lett. 35, 3417 (2010).
[CrossRef]

Krüger, J.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, Appl. Phys. A 74, 19 (2002).
[CrossRef]

LeDuc, Ph.

N. Shen, D. Datta, Ch. B. Schaffer, Ph. LeDuc, D. E. Ingber, and E. Mazur, Mech. Chem. Biosyst. 2, 17 (2005).

Lenzner, M.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, Appl. Phys. A 74, 19 (2002).
[CrossRef]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

Li, J.

Liu, H.-H.

A. P. Joglekar, H.-H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, Proc. Natl. Acad. Sci. USA 101, 5856 (2004).
[CrossRef]

Mazur, E.

N. Shen, D. Datta, Ch. B. Schaffer, Ph. LeDuc, D. E. Ingber, and E. Mazur, Mech. Chem. Biosyst. 2, 17 (2005).

Meyhöfer, E.

A. P. Joglekar, H.-H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, Proc. Natl. Acad. Sci. USA 101, 5856 (2004).
[CrossRef]

Mizeikis, V.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, Nat. Commun. 2, 1 (2011).
[CrossRef]

Mourou, G.

A. P. Joglekar, H.-H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, Proc. Natl. Acad. Sci. USA 101, 5856 (2004).
[CrossRef]

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef]

Padgett, M.

M. Padgett and R. Bowman, Nat. Photon. 5, 343 (2011).
[CrossRef]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

Rode, A.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, Phys. Rev. Lett. 106, 123901 (2011).
[CrossRef]

Rode, A. V.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, Nat. Commun. 2, 1 (2011).
[CrossRef]

C. Hnatovsky, V. G. Shvedov, W. Krolikowski, and A. V. Rode, Opt. Lett. 35, 3417 (2010).
[CrossRef]

Romallosa, K. M.

K. M. Romallosa, J. Bantang, and C. Saloma, Phys. Rev. A 68, 033812 (2003).
[CrossRef]

Saito, Y.

N. Hayazawa, Y. Saito, and S. Kawata, Appl. Phys. Lett. 85, 6239 (2004).
[CrossRef]

Saloma, C.

K. M. Romallosa, J. Bantang, and C. Saloma, Phys. Rev. A 68, 033812 (2003).
[CrossRef]

Schaffer, Ch. B.

N. Shen, D. Datta, Ch. B. Schaffer, Ph. LeDuc, D. E. Ingber, and E. Mazur, Mech. Chem. Biosyst. 2, 17 (2005).

Shen, N.

N. Shen, D. Datta, Ch. B. Schaffer, Ph. LeDuc, D. E. Ingber, and E. Mazur, Mech. Chem. Biosyst. 2, 17 (2005).

Shvedov, V.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, Phys. Rev. Lett. 106, 123901 (2011).
[CrossRef]

Shvedov, V. G.

Vailionis, A.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, Nat. Commun. 2, 1 (2011).
[CrossRef]

Yang, W.

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, Nat. Commun. 2, 1 (2011).
[CrossRef]

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef]

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, Nature 459, 410 (2009).
[CrossRef]

Anal. Chem. (1)

K. Ke, E. F. Hasselbrink, and A. J. Hunt, Anal. Chem. 77, 5083 (2005).
[CrossRef]

Appl. Phys. A (1)

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, Appl. Phys. A 74, 19 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

N. Hayazawa, Y. Saito, and S. Kawata, Appl. Phys. Lett. 85, 6239 (2004).
[CrossRef]

Mech. Chem. Biosyst. (1)

N. Shen, D. Datta, Ch. B. Schaffer, Ph. LeDuc, D. E. Ingber, and E. Mazur, Mech. Chem. Biosyst. 2, 17 (2005).

Nat. Commun. (1)

A. Vailionis, E. G. Gamaly, V. Mizeikis, W. Yang, A. V. Rode, and S. Juodkazis, Nat. Commun. 2, 1 (2011).
[CrossRef]

Nat. Photon. (1)

M. Padgett and R. Bowman, Nat. Photon. 5, 343 (2011).
[CrossRef]

Nature (1)

P. Zijlstra, J. W. M. Chon, and M. Gu, Nature 459, 410 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (1)

K. M. Romallosa, J. Bantang, and C. Saloma, Phys. Rev. A 68, 033812 (2003).
[CrossRef]

Phys. Rev. Lett. (3)

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, Phys. Rev. Lett. 106, 123901 (2011).
[CrossRef]

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

A. P. Joglekar, H.-H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, Proc. Natl. Acad. Sci. USA 101, 5856 (2004).
[CrossRef]

Other (1)

M. Gu, Advanced Optical Imaging Theory (Springer, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Setup for femtosecond laser micromachining. M, segmented phase mask; T, 2.5× Galilean telescope; P, pinhole; L, collimating lens; λ/4, quarter-wave plate; C, corrector lens; O, microscope objective; Si, silicon wafer.

Fig. 2.
Fig. 2.

(a) and (b) are simulated intensity distributions in vacuum of a m=1 vortex with σ=1 and σ=1, respectively, in the focal plane of a NA=0.9 objective. In (a), the intensities of the longitudinal Iz|Ez|2 and transverse I|E|2 components are shown in blue and red, respectively, and the total intensity I=I+Iz is represented by a solid black curve. All the intensities are normalized to the peak total intensity I in (a). (c), (e) and (d), (f) show two-dimensional intensity distributions in the focal plane for the transverse and longitudinal components for σ=1 and 1, respectively. Polarization maps for the transverse components of the electric field are presented in (c) and (d).

Fig. 3.
Fig. 3.

SEM images of ablated Si targets. (a), (c) and (b), (d) correspond to σ=1 and σ=1, respectively. In (a) and (b), each spot was irradiated with 125 0.75 nJ pulses. The lower panels show the reproducibility of results. In (c) and (d), the groves were produced with 0.75 nJ pulses at a writing speed of 2μm/s and a pulse repetition rate of 250 Hz.

Fig. 4.
Fig. 4.

Topographic profiles of ablated Si samples. (a) The ablated volume is 0.09μm3 both for σ=1 and σ=1. Craters produced with 65 0.75 nJ pulses. (b) Grooves produced at a writing speed of 1μm/s and a pulse repetition rate of 250 Hz. The sign of σ is shown for each graph.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E+=2πi{A1exp(iφ)σ++A4exp(3iφ)σ},Ez=4πA2exp(2iφ)ez,
E=2πi{A1exp(iφ)σ+A5exp(iφ)σ+},Ez=4πA3ez,
A1=iAλoαGabJ1(krsinθ)exp(ikzcosθ)sinθdθ,A2=iAλoαGaJ2(krsinθ)exp(ikzcosθ)sinθ2dθ,A3=iAλoαGaJ0(krsinθ)exp(ikzcosθ)sinθ2dθ,A4=iAλoαGacJ3(krsinθ)exp(ikzcosθ)sinθdθ,A5=iAλoαGacJ1(krsinθ)exp(ikzcosθ)sinθdθ,

Metrics