Abstract

It is shown that the Mueller matrix logarithm and the Mueller matrix roots decompositions used for the extraction of the elementary polarization properties of a depolarizing medium, although being computationally different, are formally equivalent, being both based upon the differential representation of a continuously depolarizing medium. The common set of six elementary polarization properties provided by these two decompositions is generally different from that obtained from the various product decompositions summarized by the G-polar decomposition whereby the depolarization phenomenon is treated as being concentrated, and not uniformly distributed, within the medium. However, if the medium is weakly depolarizing, the two sets of elementary properties coincide to the first order in the depolarization and tend to the set of properties of the nondepolarizing estimate of the measured Mueller matrix obtained from its Cloude sum decomposition.

© 2012 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription