Abstract

Tm3+/Yb3+ codoped transparent glass ceramic containing β-PbF2 nanocrystals was successfully prepared. After thermal treatment, emissions from the G14 state of Tm3+ excited by 980 nm laser were greatly quenched by cross relaxation and the 700 nm luminescence from Tm3+:F2,33H63 transition was strongly enhanced. A nearly monochromatic red luminescence band was observed. Based on the luminescence decay curves and Judd–Ofelt analysis, the strengthened cross relaxation played an important role in such phenomenon.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Heumann, S. Bär, H. Kretschmann, and G. Huber, Opt. Lett. 27, 1699 (2002).
    [CrossRef]
  2. E. Heumann, S. Bär, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, Appl. Phys. Lett. 88, 061108 (2006).
    [CrossRef]
  3. F. Lahoz, S. E. Hernández, N. E. Capuj, and D. Navarro-Urrios, Appl. Phys. Lett. 90, 201117 (2007).
    [CrossRef]
  4. R. Balda, L. M. Lacha, J. Fernández, M. A. Arriandiaga, J. M. Fernández-Navarro, and D. Muñoz-Martin, Opt. Express 16, 11836 (2008).
    [CrossRef]
  5. D. Q. Chen, Y. S. Wang, Y. L. Yu, F. Liu, and P. Huang, Opt. Lett. 32, 3068 (2007).
    [CrossRef]
  6. D. L. Dexter, J. Chem. Phys. 22, 1063 (1954).
    [CrossRef]
  7. J. Qiu, R. Kanno, Y. Kawamoto, Y. Bando, and K. Kurashima, J. Mater. Sci. Lett. 17, 653 (1998).
    [CrossRef]
  8. F. Lahoz, J. M. Almenara, U. R. Rodríguez-Mendoza, I. R. Matín, and V. Lavín, J. Appl. Phys. 99, 053103 (2006).
    [CrossRef]
  9. B. R. Judd, Phys. Rev. 127, 750 (1962).
    [CrossRef]
  10. G. S. Ofelt, J. Chem. Phys. 37, 511 (1962).
    [CrossRef]
  11. M. Bettinelli, A. Speghini, M. Ferrari, and M. Montagna, J. Non-Cryst. Solids 201, 211 (1996).
    [CrossRef]
  12. T. Y. Ivanova, A. A. Man’shina, A. V. Kurochkin, Y. S. Tver’yanovich, and V. B. Smirnov, J. Non-Cryst. Solids 298, 7 (2002).
    [CrossRef]
  13. D. L. Dexter, J. Chem. Phys. 21, 836 (1953).
    [CrossRef]

2008

2007

D. Q. Chen, Y. S. Wang, Y. L. Yu, F. Liu, and P. Huang, Opt. Lett. 32, 3068 (2007).
[CrossRef]

F. Lahoz, S. E. Hernández, N. E. Capuj, and D. Navarro-Urrios, Appl. Phys. Lett. 90, 201117 (2007).
[CrossRef]

2006

F. Lahoz, J. M. Almenara, U. R. Rodríguez-Mendoza, I. R. Matín, and V. Lavín, J. Appl. Phys. 99, 053103 (2006).
[CrossRef]

E. Heumann, S. Bär, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, Appl. Phys. Lett. 88, 061108 (2006).
[CrossRef]

2002

T. Y. Ivanova, A. A. Man’shina, A. V. Kurochkin, Y. S. Tver’yanovich, and V. B. Smirnov, J. Non-Cryst. Solids 298, 7 (2002).
[CrossRef]

E. Heumann, S. Bär, H. Kretschmann, and G. Huber, Opt. Lett. 27, 1699 (2002).
[CrossRef]

1998

J. Qiu, R. Kanno, Y. Kawamoto, Y. Bando, and K. Kurashima, J. Mater. Sci. Lett. 17, 653 (1998).
[CrossRef]

1996

M. Bettinelli, A. Speghini, M. Ferrari, and M. Montagna, J. Non-Cryst. Solids 201, 211 (1996).
[CrossRef]

1962

B. R. Judd, Phys. Rev. 127, 750 (1962).
[CrossRef]

G. S. Ofelt, J. Chem. Phys. 37, 511 (1962).
[CrossRef]

1954

D. L. Dexter, J. Chem. Phys. 22, 1063 (1954).
[CrossRef]

1953

D. L. Dexter, J. Chem. Phys. 21, 836 (1953).
[CrossRef]

Almenara, J. M.

F. Lahoz, J. M. Almenara, U. R. Rodríguez-Mendoza, I. R. Matín, and V. Lavín, J. Appl. Phys. 99, 053103 (2006).
[CrossRef]

Arriandiaga, M. A.

Balda, R.

Bando, Y.

J. Qiu, R. Kanno, Y. Kawamoto, Y. Bando, and K. Kurashima, J. Mater. Sci. Lett. 17, 653 (1998).
[CrossRef]

Bär, S.

E. Heumann, S. Bär, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, Appl. Phys. Lett. 88, 061108 (2006).
[CrossRef]

E. Heumann, S. Bär, H. Kretschmann, and G. Huber, Opt. Lett. 27, 1699 (2002).
[CrossRef]

Bettinelli, M.

M. Bettinelli, A. Speghini, M. Ferrari, and M. Montagna, J. Non-Cryst. Solids 201, 211 (1996).
[CrossRef]

Butterworth, S.

E. Heumann, S. Bär, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, Appl. Phys. Lett. 88, 061108 (2006).
[CrossRef]

Capuj, N. E.

F. Lahoz, S. E. Hernández, N. E. Capuj, and D. Navarro-Urrios, Appl. Phys. Lett. 90, 201117 (2007).
[CrossRef]

Chen, D. Q.

Dexter, D. L.

D. L. Dexter, J. Chem. Phys. 22, 1063 (1954).
[CrossRef]

D. L. Dexter, J. Chem. Phys. 21, 836 (1953).
[CrossRef]

Diening, A.

E. Heumann, S. Bär, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, Appl. Phys. Lett. 88, 061108 (2006).
[CrossRef]

Fernández, J.

Fernández-Navarro, J. M.

Ferrari, M.

M. Bettinelli, A. Speghini, M. Ferrari, and M. Montagna, J. Non-Cryst. Solids 201, 211 (1996).
[CrossRef]

Hernández, S. E.

F. Lahoz, S. E. Hernández, N. E. Capuj, and D. Navarro-Urrios, Appl. Phys. Lett. 90, 201117 (2007).
[CrossRef]

Heumann, E.

E. Heumann, S. Bär, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, Appl. Phys. Lett. 88, 061108 (2006).
[CrossRef]

E. Heumann, S. Bär, H. Kretschmann, and G. Huber, Opt. Lett. 27, 1699 (2002).
[CrossRef]

Huang, P.

Huber, G.

E. Heumann, S. Bär, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, Appl. Phys. Lett. 88, 061108 (2006).
[CrossRef]

E. Heumann, S. Bär, H. Kretschmann, and G. Huber, Opt. Lett. 27, 1699 (2002).
[CrossRef]

Ivanova, T. Y.

T. Y. Ivanova, A. A. Man’shina, A. V. Kurochkin, Y. S. Tver’yanovich, and V. B. Smirnov, J. Non-Cryst. Solids 298, 7 (2002).
[CrossRef]

Judd, B. R.

B. R. Judd, Phys. Rev. 127, 750 (1962).
[CrossRef]

Kanno, R.

J. Qiu, R. Kanno, Y. Kawamoto, Y. Bando, and K. Kurashima, J. Mater. Sci. Lett. 17, 653 (1998).
[CrossRef]

Kawamoto, Y.

J. Qiu, R. Kanno, Y. Kawamoto, Y. Bando, and K. Kurashima, J. Mater. Sci. Lett. 17, 653 (1998).
[CrossRef]

Kretschmann, H.

Kurashima, K.

J. Qiu, R. Kanno, Y. Kawamoto, Y. Bando, and K. Kurashima, J. Mater. Sci. Lett. 17, 653 (1998).
[CrossRef]

Kurochkin, A. V.

T. Y. Ivanova, A. A. Man’shina, A. V. Kurochkin, Y. S. Tver’yanovich, and V. B. Smirnov, J. Non-Cryst. Solids 298, 7 (2002).
[CrossRef]

Lacha, L. M.

Lahoz, F.

F. Lahoz, S. E. Hernández, N. E. Capuj, and D. Navarro-Urrios, Appl. Phys. Lett. 90, 201117 (2007).
[CrossRef]

F. Lahoz, J. M. Almenara, U. R. Rodríguez-Mendoza, I. R. Matín, and V. Lavín, J. Appl. Phys. 99, 053103 (2006).
[CrossRef]

Lavín, V.

F. Lahoz, J. M. Almenara, U. R. Rodríguez-Mendoza, I. R. Matín, and V. Lavín, J. Appl. Phys. 99, 053103 (2006).
[CrossRef]

Liu, F.

Man’shina, A. A.

T. Y. Ivanova, A. A. Man’shina, A. V. Kurochkin, Y. S. Tver’yanovich, and V. B. Smirnov, J. Non-Cryst. Solids 298, 7 (2002).
[CrossRef]

Matín, I. R.

F. Lahoz, J. M. Almenara, U. R. Rodríguez-Mendoza, I. R. Matín, and V. Lavín, J. Appl. Phys. 99, 053103 (2006).
[CrossRef]

Montagna, M.

M. Bettinelli, A. Speghini, M. Ferrari, and M. Montagna, J. Non-Cryst. Solids 201, 211 (1996).
[CrossRef]

Muñoz-Martin, D.

Navarro-Urrios, D.

F. Lahoz, S. E. Hernández, N. E. Capuj, and D. Navarro-Urrios, Appl. Phys. Lett. 90, 201117 (2007).
[CrossRef]

Ofelt, G. S.

G. S. Ofelt, J. Chem. Phys. 37, 511 (1962).
[CrossRef]

Qiu, J.

J. Qiu, R. Kanno, Y. Kawamoto, Y. Bando, and K. Kurashima, J. Mater. Sci. Lett. 17, 653 (1998).
[CrossRef]

Rademaker, K.

E. Heumann, S. Bär, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, Appl. Phys. Lett. 88, 061108 (2006).
[CrossRef]

Rodríguez-Mendoza, U. R.

F. Lahoz, J. M. Almenara, U. R. Rodríguez-Mendoza, I. R. Matín, and V. Lavín, J. Appl. Phys. 99, 053103 (2006).
[CrossRef]

Seelert, W.

E. Heumann, S. Bär, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, Appl. Phys. Lett. 88, 061108 (2006).
[CrossRef]

Smirnov, V. B.

T. Y. Ivanova, A. A. Man’shina, A. V. Kurochkin, Y. S. Tver’yanovich, and V. B. Smirnov, J. Non-Cryst. Solids 298, 7 (2002).
[CrossRef]

Speghini, A.

M. Bettinelli, A. Speghini, M. Ferrari, and M. Montagna, J. Non-Cryst. Solids 201, 211 (1996).
[CrossRef]

Tver’yanovich, Y. S.

T. Y. Ivanova, A. A. Man’shina, A. V. Kurochkin, Y. S. Tver’yanovich, and V. B. Smirnov, J. Non-Cryst. Solids 298, 7 (2002).
[CrossRef]

Wang, Y. S.

Yu, Y. L.

Appl. Phys. Lett.

E. Heumann, S. Bär, K. Rademaker, G. Huber, S. Butterworth, A. Diening, and W. Seelert, Appl. Phys. Lett. 88, 061108 (2006).
[CrossRef]

F. Lahoz, S. E. Hernández, N. E. Capuj, and D. Navarro-Urrios, Appl. Phys. Lett. 90, 201117 (2007).
[CrossRef]

J. Appl. Phys.

F. Lahoz, J. M. Almenara, U. R. Rodríguez-Mendoza, I. R. Matín, and V. Lavín, J. Appl. Phys. 99, 053103 (2006).
[CrossRef]

J. Chem. Phys.

D. L. Dexter, J. Chem. Phys. 22, 1063 (1954).
[CrossRef]

G. S. Ofelt, J. Chem. Phys. 37, 511 (1962).
[CrossRef]

D. L. Dexter, J. Chem. Phys. 21, 836 (1953).
[CrossRef]

J. Mater. Sci. Lett.

J. Qiu, R. Kanno, Y. Kawamoto, Y. Bando, and K. Kurashima, J. Mater. Sci. Lett. 17, 653 (1998).
[CrossRef]

J. Non-Cryst. Solids

M. Bettinelli, A. Speghini, M. Ferrari, and M. Montagna, J. Non-Cryst. Solids 201, 211 (1996).
[CrossRef]

T. Y. Ivanova, A. A. Man’shina, A. V. Kurochkin, Y. S. Tver’yanovich, and V. B. Smirnov, J. Non-Cryst. Solids 298, 7 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

B. R. Judd, Phys. Rev. 127, 750 (1962).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Energy level diagram of Tm3+ and Yb3+ and the possible cross-relaxation channels, as well as processes generating blue, red, and near-IR UC emissions.

Fig. 2.
Fig. 2.

XRD patterns of the precursor glass and glass ceramic.

Fig. 3.
Fig. 3.

Absorption spectra for the glass and the glass ceramic; the inset shows the enlarged part between 660 and 820 nm.

Fig. 4.
Fig. 4.

Upconversion emission spectra of (a) the precursor glass and (b) the glass ceramic under 980 nm laser excitation; the insets of (a) and (b) show photographs of luminescence from the glass and the glass ceramic.

Fig. 5.
Fig. 5.

Luminescence decay curves for the (a) G41, (b) F2,32, and (c) H43 states in the precursor glass (open black symbols) and glass ceramic (solid red symbols).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

1/τ=1/τrad+Wph+Wcr,
τrad=1Aed+Amd,
Aed=64π4e23h(2J+1)λ3×n(n2+2)29Σt=2,4,6Ωt|γJU(t)γJ|2,
Amd=4π2e2hn33m2c2(2J+1)λ3|γJL+2SγJ|2.

Metrics