Abstract

Two asynchronous, broadband 3.3 µm pulse trains with a stabilized repetition-rate difference of up to 5 kHz were generated using an ultrafast optical parametric oscillator. The two oscillation channels, each producing 100mW average power, ran essentially independently, and weak non-phase-matched sum-frequency mixing between them provided a timing signal that indicated when the asynchronous pulses coincided. The system has immediate applications in incoherent asynchronous optical sampling and, with additional carrier-envelope-offset stabilization, could be applied to coherent dual-frequency-comb spectroscopy.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Kafka, J. W. Pieterse, and M. L. Watts, Opt. Lett. 17, 1286 (1992).
    [CrossRef]
  2. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, Rev. Sci. Instrum. 78, 035107 (2007).
    [CrossRef]
  3. A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, Opt. Express 13, 9029 (2005).
    [CrossRef]
  4. I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
    [CrossRef]
  5. Z. Zhang, J. Sun, T. Gardiner, and D. T. Reid, Opt. Express 19, 17127 (2011).
    [CrossRef]
  6. Z. Zhang, T. Gardiner, and D. T. Reid, Electron. Lett. 47, 1140 (2011).
    [CrossRef]
  7. D. T. Reid, Z. Penman, M. Ebrahimzadeh, W. Sibbett, H. Karlsson, and F. Laurell, Opt. Lett. 22, 1397 (1997).
    [CrossRef]
  8. J. H. Sun, B. J. S. Gale, and D. T. Reid, Opt. Lett. 32, 1414 (2007).
    [CrossRef]

2011 (2)

Z. Zhang, J. Sun, T. Gardiner, and D. T. Reid, Opt. Express 19, 17127 (2011).
[CrossRef]

Z. Zhang, T. Gardiner, and D. T. Reid, Electron. Lett. 47, 1140 (2011).
[CrossRef]

2008 (1)

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef]

2007 (2)

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, Rev. Sci. Instrum. 78, 035107 (2007).
[CrossRef]

J. H. Sun, B. J. S. Gale, and D. T. Reid, Opt. Lett. 32, 1414 (2007).
[CrossRef]

2005 (1)

1997 (1)

1992 (1)

Bartels, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, Rev. Sci. Instrum. 78, 035107 (2007).
[CrossRef]

Brehm, M.

Cerna, R.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, Rev. Sci. Instrum. 78, 035107 (2007).
[CrossRef]

Coddington, I.

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef]

Dekorsy, T.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, Rev. Sci. Instrum. 78, 035107 (2007).
[CrossRef]

Ebrahimzadeh, M.

Gale, B. J. S.

Gardiner, T.

Z. Zhang, J. Sun, T. Gardiner, and D. T. Reid, Opt. Express 19, 17127 (2011).
[CrossRef]

Z. Zhang, T. Gardiner, and D. T. Reid, Electron. Lett. 47, 1140 (2011).
[CrossRef]

Hudert, F.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, Rev. Sci. Instrum. 78, 035107 (2007).
[CrossRef]

Janke, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, Rev. Sci. Instrum. 78, 035107 (2007).
[CrossRef]

Kafka, J. D.

Karlsson, H.

Keilmann, F.

Kistner, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, Rev. Sci. Instrum. 78, 035107 (2007).
[CrossRef]

Laurell, F.

Newbury, N. R.

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef]

Penman, Z.

Pieterse, J. W.

Reid, D. T.

Schliesser, A.

Sibbett, W.

Sun, J.

Sun, J. H.

Swann, W. C.

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef]

Thoma, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, Rev. Sci. Instrum. 78, 035107 (2007).
[CrossRef]

van der Weide, D.

Watts, M. L.

Zhang, Z.

Z. Zhang, J. Sun, T. Gardiner, and D. T. Reid, Opt. Express 19, 17127 (2011).
[CrossRef]

Z. Zhang, T. Gardiner, and D. T. Reid, Electron. Lett. 47, 1140 (2011).
[CrossRef]

Electron. Lett. (1)

Z. Zhang, T. Gardiner, and D. T. Reid, Electron. Lett. 47, 1140 (2011).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, and N. R. Newbury, Phys. Rev. Lett. 100, 013902 (2008).
[CrossRef]

Rev. Sci. Instrum. (1)

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, Rev. Sci. Instrum. 78, 035107 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Asynchronous SPOPO layout. HWP, half-wave plate; ISO, isolator; BS, beam splitter; L, lens; OC, output coupler; PD, photodiode.

Fig. 2.
Fig. 2.

(a) Signal and (b) idler output power from the OPO. The overall signal (idler) output power from Channels 1 and 2 was measured/inferred versus the pump power at Channel 1 while Channel 2 was pumped at full power. (c) Signal and (d) idler output spectra (at full pump power). The inferred total power and spectra for Channels 1 and 2 were obtained by adding those measured for each individual channel (Δf=20Hz).

Fig. 3.
Fig. 3.

Signal pulse train from (a) Channel 1 individually, (b) Channel 2 individually, (c) Channels 1 and 2 simultaneously when the pulses from the two pulse trains overlapped, and (d) Channels 1 and 2 simultaneously when the pulses from the two pulse trains did not overlap in the time domain (Δf=1kHz).

Fig. 4.
Fig. 4.

Dependence on the repetition-rate difference of the normalized total signal output power (circles, left axis) and the center wavelengths of the signal pulses (triangles, right axis).

Fig. 5.
Fig. 5.

Non-phase-matched SH/SF signal from the OPO (Δf=1kHz).

Metrics