Abstract

We present a reconfigurable microwave frequency measurement technique with adjustable measurement range and resolution. The key novelty of the technique is the employment of stimulated Brillouin scattering, which results in a tunable amplitude comparison function, leading to an adjustable measurement range and resolution. The proposed technique is switchable between a wideband tunable narrow measurement range (2GHz) with high resolution (±0.05GHz) and a fixed wide measurement range (12 GHz) with moderate resolution (±0.25GHz).

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, Opt. Express 17, 22983 (2009).
    [CrossRef]
  2. L. V. T. Nguyen and D. B. Hunter, IEEE Photon. Technol. Lett. 18, 1188 (2006).
    [CrossRef]
  3. J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, IEEE Photon. Technol. Lett. 21, 1069 (2009).
    [CrossRef]
  4. X. Zou and J. Yao, IEEE Photon. Technol. Lett. 20, 1989 (2008).
    [CrossRef]
  5. J. Li, S. Fu, K. Xu, J. Q. Zhou, P. Shum, J. Wu, and J. Lin, Opt. Lett. 34, 743 (2009).
    [CrossRef]
  6. T. Niemi, G. Genty, and H. Ludvigsen, in Proceedings of the 27th Eururopean Conference on Optical Communication (IEEE, 2001), Vol. 4, p. 496.
  7. A. Loayssa and F. J. Lahoz, IEEE Photon. Technol. Lett. 18, 208 (2006).
    [CrossRef]
  8. M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K. W. Lauterbach, and T. Schneider, IEEE Trans. Microw. Theory Tech. 54, 1576 (2006).
    [CrossRef]
  9. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, J. Lightwave Technol. 25, 201 (2007).
    [CrossRef]

2009 (3)

2008 (1)

X. Zou and J. Yao, IEEE Photon. Technol. Lett. 20, 1989 (2008).
[CrossRef]

2007 (1)

2006 (3)

L. V. T. Nguyen and D. B. Hunter, IEEE Photon. Technol. Lett. 18, 1188 (2006).
[CrossRef]

A. Loayssa and F. J. Lahoz, IEEE Photon. Technol. Lett. 18, 208 (2006).
[CrossRef]

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K. W. Lauterbach, and T. Schneider, IEEE Trans. Microw. Theory Tech. 54, 1576 (2006).
[CrossRef]

Aditya, S.

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, IEEE Photon. Technol. Lett. 21, 1069 (2009).
[CrossRef]

Ammann, M. J.

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K. W. Lauterbach, and T. Schneider, IEEE Trans. Microw. Theory Tech. 54, 1576 (2006).
[CrossRef]

Bui, L. A.

Dawes, A. M. C.

Eggleton, B. J.

Emami, H.

Fu, S.

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, IEEE Photon. Technol. Lett. 21, 1069 (2009).
[CrossRef]

J. Li, S. Fu, K. Xu, J. Q. Zhou, P. Shum, J. Wu, and J. Lin, Opt. Lett. 34, 743 (2009).
[CrossRef]

Gauthier, D. J.

Genty, G.

T. Niemi, G. Genty, and H. Ludvigsen, in Proceedings of the 27th Eururopean Conference on Optical Communication (IEEE, 2001), Vol. 4, p. 496.

Hunter, D. B.

L. V. T. Nguyen and D. B. Hunter, IEEE Photon. Technol. Lett. 18, 1188 (2006).
[CrossRef]

Junker, M.

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K. W. Lauterbach, and T. Schneider, IEEE Trans. Microw. Theory Tech. 54, 1576 (2006).
[CrossRef]

Klinger, J.

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K. W. Lauterbach, and T. Schneider, IEEE Trans. Microw. Theory Tech. 54, 1576 (2006).
[CrossRef]

Lahoz, F. J.

A. Loayssa and F. J. Lahoz, IEEE Photon. Technol. Lett. 18, 208 (2006).
[CrossRef]

Lauterbach, K. W.

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K. W. Lauterbach, and T. Schneider, IEEE Trans. Microw. Theory Tech. 54, 1576 (2006).
[CrossRef]

Li, J.

Lin, C.

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, IEEE Photon. Technol. Lett. 21, 1069 (2009).
[CrossRef]

Lin, J.

Loayssa, A.

A. Loayssa and F. J. Lahoz, IEEE Photon. Technol. Lett. 18, 208 (2006).
[CrossRef]

Ludvigsen, H.

T. Niemi, G. Genty, and H. Ludvigsen, in Proceedings of the 27th Eururopean Conference on Optical Communication (IEEE, 2001), Vol. 4, p. 496.

Mitchell, A.

Nguyen, L. V. T.

L. V. T. Nguyen and D. B. Hunter, IEEE Photon. Technol. Lett. 18, 1188 (2006).
[CrossRef]

Niemi, T.

T. Niemi, G. Genty, and H. Ludvigsen, in Proceedings of the 27th Eururopean Conference on Optical Communication (IEEE, 2001), Vol. 4, p. 496.

Pelusi, M. D.

Sarkhosh, N.

Schneider, T.

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K. W. Lauterbach, and T. Schneider, IEEE Trans. Microw. Theory Tech. 54, 1576 (2006).
[CrossRef]

Schwarzbacher, A. T.

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K. W. Lauterbach, and T. Schneider, IEEE Trans. Microw. Theory Tech. 54, 1576 (2006).
[CrossRef]

Shum, P.

Shum, P. P.

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, IEEE Photon. Technol. Lett. 21, 1069 (2009).
[CrossRef]

Vo, T. D.

Willner, A. E.

Wu, J.

Xu, K.

Yao, J.

X. Zou and J. Yao, IEEE Photon. Technol. Lett. 20, 1989 (2008).
[CrossRef]

Zhang, L.

Zhou, J.

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, IEEE Photon. Technol. Lett. 21, 1069 (2009).
[CrossRef]

Zhou, J. Q.

Zhu, Z.

Zou, X.

X. Zou and J. Yao, IEEE Photon. Technol. Lett. 20, 1989 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

L. V. T. Nguyen and D. B. Hunter, IEEE Photon. Technol. Lett. 18, 1188 (2006).
[CrossRef]

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, IEEE Photon. Technol. Lett. 21, 1069 (2009).
[CrossRef]

X. Zou and J. Yao, IEEE Photon. Technol. Lett. 20, 1989 (2008).
[CrossRef]

A. Loayssa and F. J. Lahoz, IEEE Photon. Technol. Lett. 18, 208 (2006).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K. W. Lauterbach, and T. Schneider, IEEE Trans. Microw. Theory Tech. 54, 1576 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Lett. (1)

Other (1)

T. Niemi, G. Genty, and H. Ludvigsen, in Proceedings of the 27th Eururopean Conference on Optical Communication (IEEE, 2001), Vol. 4, p. 496.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Brillouin-induced carrier phase shift: (a) principal and (b) measured phase shift as a function of fp for pump power of 8 dBm.

Fig. 3.
Fig. 3.

Measured and simulated results of (a) the power-fading functions and (b) the corresponding ACFs for the non-SBS case and for the case using SBS with different fp at the fixed pump power of 8 dBm. Solid curves, experimental results; dashed curves, theoretical results.

Fig. 4.
Fig. 4.

(a) Measured frequency versus input frequency. (b) Measurement error as a function of input frequency.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

γ=cos2(πD1λ12fm2/c)cos2(πD2λ22fm2/c),
Mmax=c/2D1λ12.
γ=cos2(πD1λ12fm2/cφ)cos2(πD2λ22fm2/c).
γ=sin2(πD1λ12fm2/c)cos2(πD2λ22fm2/c).

Metrics