Abstract

Surface plasmon resonance (SPR) sensors are known to be able to detect very low surface concentrations of (bio)molecules on macroscopic areas. To explore the potential of SPR biosensors to achieve single-molecule detection, we have minimized the read-out area (to 64μm2) by employing a sensor system based on spectroscopy of surface plasmons generated on a diffractive structure via a microscope objective and light collection through a small aperture. This approach allows for decreasing the number of detected molecules by 3 orders of magnitude compared to state-of-the-art SPR sensors. A protein monolayer has been shown to produce a response of 5000 times the baseline noise, suggesting that as few as 500 proteins could be detected by the sensor.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Rich and D. G. Myszka, J. Mol. Recognit. 23, 1 (2010).
    [CrossRef]
  2. J. Homola, Chem. Rev. 108, 462 (2008).
    [CrossRef]
  3. M. Piliarik and J. Homola, Opt. Express 17, 16505 (2009).
    [CrossRef]
  4. M. Piliarik and J. Homola, Sens. Actuators B 134, 353 (2008).
    [CrossRef]
  5. T. Sannomiya and J. Voros, Trends Biotechnol. 29, 343 (2011).
    [CrossRef]
  6. A. D. McFarland and R. P. Van Duyne, Nano Lett. 3, 1057 (2003).
    [CrossRef]
  7. K. M. Mayer, F. Hao, S. Lee, P. Nordlander, and J. H. Hafner, Nanotechnology 21, 255503 (2010).
    [CrossRef]
  8. X. D. Su, Y. J. Wu, R. Robelek, and W. Knoll, Langmuir 21, 348 (2005).
    [CrossRef]
  9. K. Pimková, M. Bocková, K. Hegnerová, J. Suttnar, J. Čermák, J. Homola, and J. Dyr, “Surface plasmon resonance biosensor for the detection of VEGFR-1—a protein marker of myelodysplastic syndromes,” Anal. Bioanal. Chem., doi:10.1007/s00216-011-5395-3 (to be published).
    [CrossRef]

2011

T. Sannomiya and J. Voros, Trends Biotechnol. 29, 343 (2011).
[CrossRef]

2010

K. M. Mayer, F. Hao, S. Lee, P. Nordlander, and J. H. Hafner, Nanotechnology 21, 255503 (2010).
[CrossRef]

R. L. Rich and D. G. Myszka, J. Mol. Recognit. 23, 1 (2010).
[CrossRef]

2009

2008

M. Piliarik and J. Homola, Sens. Actuators B 134, 353 (2008).
[CrossRef]

J. Homola, Chem. Rev. 108, 462 (2008).
[CrossRef]

2005

X. D. Su, Y. J. Wu, R. Robelek, and W. Knoll, Langmuir 21, 348 (2005).
[CrossRef]

2003

A. D. McFarland and R. P. Van Duyne, Nano Lett. 3, 1057 (2003).
[CrossRef]

Bocková, M.

K. Pimková, M. Bocková, K. Hegnerová, J. Suttnar, J. Čermák, J. Homola, and J. Dyr, “Surface plasmon resonance biosensor for the detection of VEGFR-1—a protein marker of myelodysplastic syndromes,” Anal. Bioanal. Chem., doi:10.1007/s00216-011-5395-3 (to be published).
[CrossRef]

Cermák, J.

K. Pimková, M. Bocková, K. Hegnerová, J. Suttnar, J. Čermák, J. Homola, and J. Dyr, “Surface plasmon resonance biosensor for the detection of VEGFR-1—a protein marker of myelodysplastic syndromes,” Anal. Bioanal. Chem., doi:10.1007/s00216-011-5395-3 (to be published).
[CrossRef]

Dyr, J.

K. Pimková, M. Bocková, K. Hegnerová, J. Suttnar, J. Čermák, J. Homola, and J. Dyr, “Surface plasmon resonance biosensor for the detection of VEGFR-1—a protein marker of myelodysplastic syndromes,” Anal. Bioanal. Chem., doi:10.1007/s00216-011-5395-3 (to be published).
[CrossRef]

Hafner, J. H.

K. M. Mayer, F. Hao, S. Lee, P. Nordlander, and J. H. Hafner, Nanotechnology 21, 255503 (2010).
[CrossRef]

Hao, F.

K. M. Mayer, F. Hao, S. Lee, P. Nordlander, and J. H. Hafner, Nanotechnology 21, 255503 (2010).
[CrossRef]

Hegnerová, K.

K. Pimková, M. Bocková, K. Hegnerová, J. Suttnar, J. Čermák, J. Homola, and J. Dyr, “Surface plasmon resonance biosensor for the detection of VEGFR-1—a protein marker of myelodysplastic syndromes,” Anal. Bioanal. Chem., doi:10.1007/s00216-011-5395-3 (to be published).
[CrossRef]

Homola, J.

M. Piliarik and J. Homola, Opt. Express 17, 16505 (2009).
[CrossRef]

M. Piliarik and J. Homola, Sens. Actuators B 134, 353 (2008).
[CrossRef]

J. Homola, Chem. Rev. 108, 462 (2008).
[CrossRef]

K. Pimková, M. Bocková, K. Hegnerová, J. Suttnar, J. Čermák, J. Homola, and J. Dyr, “Surface plasmon resonance biosensor for the detection of VEGFR-1—a protein marker of myelodysplastic syndromes,” Anal. Bioanal. Chem., doi:10.1007/s00216-011-5395-3 (to be published).
[CrossRef]

Knoll, W.

X. D. Su, Y. J. Wu, R. Robelek, and W. Knoll, Langmuir 21, 348 (2005).
[CrossRef]

Lee, S.

K. M. Mayer, F. Hao, S. Lee, P. Nordlander, and J. H. Hafner, Nanotechnology 21, 255503 (2010).
[CrossRef]

Mayer, K. M.

K. M. Mayer, F. Hao, S. Lee, P. Nordlander, and J. H. Hafner, Nanotechnology 21, 255503 (2010).
[CrossRef]

McFarland, A. D.

A. D. McFarland and R. P. Van Duyne, Nano Lett. 3, 1057 (2003).
[CrossRef]

Myszka, D. G.

R. L. Rich and D. G. Myszka, J. Mol. Recognit. 23, 1 (2010).
[CrossRef]

Nordlander, P.

K. M. Mayer, F. Hao, S. Lee, P. Nordlander, and J. H. Hafner, Nanotechnology 21, 255503 (2010).
[CrossRef]

Piliarik, M.

M. Piliarik and J. Homola, Opt. Express 17, 16505 (2009).
[CrossRef]

M. Piliarik and J. Homola, Sens. Actuators B 134, 353 (2008).
[CrossRef]

Pimková, K.

K. Pimková, M. Bocková, K. Hegnerová, J. Suttnar, J. Čermák, J. Homola, and J. Dyr, “Surface plasmon resonance biosensor for the detection of VEGFR-1—a protein marker of myelodysplastic syndromes,” Anal. Bioanal. Chem., doi:10.1007/s00216-011-5395-3 (to be published).
[CrossRef]

Rich, R. L.

R. L. Rich and D. G. Myszka, J. Mol. Recognit. 23, 1 (2010).
[CrossRef]

Robelek, R.

X. D. Su, Y. J. Wu, R. Robelek, and W. Knoll, Langmuir 21, 348 (2005).
[CrossRef]

Sannomiya, T.

T. Sannomiya and J. Voros, Trends Biotechnol. 29, 343 (2011).
[CrossRef]

Su, X. D.

X. D. Su, Y. J. Wu, R. Robelek, and W. Knoll, Langmuir 21, 348 (2005).
[CrossRef]

Suttnar, J.

K. Pimková, M. Bocková, K. Hegnerová, J. Suttnar, J. Čermák, J. Homola, and J. Dyr, “Surface plasmon resonance biosensor for the detection of VEGFR-1—a protein marker of myelodysplastic syndromes,” Anal. Bioanal. Chem., doi:10.1007/s00216-011-5395-3 (to be published).
[CrossRef]

Van Duyne, R. P.

A. D. McFarland and R. P. Van Duyne, Nano Lett. 3, 1057 (2003).
[CrossRef]

Voros, J.

T. Sannomiya and J. Voros, Trends Biotechnol. 29, 343 (2011).
[CrossRef]

Wu, Y. J.

X. D. Su, Y. J. Wu, R. Robelek, and W. Knoll, Langmuir 21, 348 (2005).
[CrossRef]

Chem. Rev.

J. Homola, Chem. Rev. 108, 462 (2008).
[CrossRef]

J. Mol. Recognit.

R. L. Rich and D. G. Myszka, J. Mol. Recognit. 23, 1 (2010).
[CrossRef]

Langmuir

X. D. Su, Y. J. Wu, R. Robelek, and W. Knoll, Langmuir 21, 348 (2005).
[CrossRef]

Nano Lett.

A. D. McFarland and R. P. Van Duyne, Nano Lett. 3, 1057 (2003).
[CrossRef]

Nanotechnology

K. M. Mayer, F. Hao, S. Lee, P. Nordlander, and J. H. Hafner, Nanotechnology 21, 255503 (2010).
[CrossRef]

Opt. Express

Sens. Actuators B

M. Piliarik and J. Homola, Sens. Actuators B 134, 353 (2008).
[CrossRef]

Trends Biotechnol.

T. Sannomiya and J. Voros, Trends Biotechnol. 29, 343 (2011).
[CrossRef]

Other

K. Pimková, M. Bocková, K. Hegnerová, J. Suttnar, J. Čermák, J. Homola, and J. Dyr, “Surface plasmon resonance biosensor for the detection of VEGFR-1—a protein marker of myelodysplastic syndromes,” Anal. Bioanal. Chem., doi:10.1007/s00216-011-5395-3 (to be published).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Optical setup of the SPR sensor with a minimized sensing area.

Fig. 2.
Fig. 2.

(a) Optical micrograph of the sensing structure with a photoresist layer and resist-free windows of different sizes (the grating grooves are clearly visible). (b) SPR image of the resist-free windows. The dark color corresponds to the excitation of PSPs.

Fig. 3.
Fig. 3.

Dependence of the shape of the SPR dip on the distance between the collection area and the edge of the resist-free window.

Fig. 4.
Fig. 4.

Temporal response of the SPR sensor to the formation of the streptavidin monolayer. Inset: baseline noise.

Metrics