Abstract

In this Letter we evaluate a technique for the efficient and flexible generation of aluminum nanorings based on double patterning and variable shaped electron beam lithography. The process is demonstrated by realizing nanorings with diameters down to 90 nm and feature sizes of 30 nm utilizing a writing speed of one ring per microsecond. Because of redepositions caused by involved etching processes, the material of the rings and, therefore, the impact on the plasmonic properties, are unknown. This issue, which is commonly encountered when metals are nanostructured, is solved by adapting a realistic simulation model that accounts for geometry details and effective material properties. Based on this model, the redepositions are quantified, the plasmonic properties are investigated, and a design tool for the very general class of nanofabrication techniques involving the etching of metals is provided.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Nordlander, ACS Nano 3, 488 (2009).
    [CrossRef]
  2. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, Phys. Rev. Lett. 90, 057401 (2003).
    [CrossRef]
  3. S. Kurth, K. Hiller, N. Neumann, M. Seifert, M. Ebermann, J. Zajadacz, and T. Gessner, Proc. SPIE 7713, 77131S (2010).
    [CrossRef]
  4. M. G. Banaee and K. B. Crozier, Opt. Lett. 35, 760 (2010).
    [CrossRef]
  5. S. M. Orbons, M. I. Haftel, C. Schlockermann, D. Freeman, M. Milicevic, T. J. Davis, B. Luther-Davies, D. N. Jamieson, and A. Roberts, Opt. Lett. 33, 821 (2008).
    [CrossRef]
  6. H. M. Gong, L. Zhou, X. R. Su, S. Xiao, S. D. Liu, and Q. Q. Wang, Adv. Funct. Mater. 19, 298 (2009).
    [CrossRef]
  7. C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, Phys. Rev. B 79, 233107 (2009).
    [CrossRef]
  8. T. Weber, H.-J. Fuchs, H. Schmidt, E.-B. Kley, and A. Tünnermann, Proc. SPIE 7205, 720504 (2009).
    [CrossRef]
  9. P. Hahmann, L. Bettin, M. Boettcher, U. Denker, T. Elster, S. Jahr, U.-C. Kirschstein, K.-H. Kliem, and B. Schnabel, Microelectron. Eng. 84, 774 (2007).
    [CrossRef]
  10. U. D. Zeitner and E.-B. Kley, Proc. SPIE 6290, 629009 (2006).
    [CrossRef]
  11. N. Large, J. Aizpurua, V. K. Lin, S. L. Teo, R. Marty, S. Tripathy, and A. Mlayah, Opt. Express 19, 5587 (2011).
    [CrossRef]
  12. G. A. Niklasson, C. G. Granqvist, and O. Hunderi, Appl. Opt. 20, 26 (1981).
    [CrossRef]

2011 (1)

2010 (2)

S. Kurth, K. Hiller, N. Neumann, M. Seifert, M. Ebermann, J. Zajadacz, and T. Gessner, Proc. SPIE 7713, 77131S (2010).
[CrossRef]

M. G. Banaee and K. B. Crozier, Opt. Lett. 35, 760 (2010).
[CrossRef]

2009 (4)

P. Nordlander, ACS Nano 3, 488 (2009).
[CrossRef]

H. M. Gong, L. Zhou, X. R. Su, S. Xiao, S. D. Liu, and Q. Q. Wang, Adv. Funct. Mater. 19, 298 (2009).
[CrossRef]

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, Phys. Rev. B 79, 233107 (2009).
[CrossRef]

T. Weber, H.-J. Fuchs, H. Schmidt, E.-B. Kley, and A. Tünnermann, Proc. SPIE 7205, 720504 (2009).
[CrossRef]

2008 (1)

2007 (1)

P. Hahmann, L. Bettin, M. Boettcher, U. Denker, T. Elster, S. Jahr, U.-C. Kirschstein, K.-H. Kliem, and B. Schnabel, Microelectron. Eng. 84, 774 (2007).
[CrossRef]

2006 (1)

U. D. Zeitner and E.-B. Kley, Proc. SPIE 6290, 629009 (2006).
[CrossRef]

2003 (1)

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

1981 (1)

Aizpurua, J.

N. Large, J. Aizpurua, V. K. Lin, S. L. Teo, R. Marty, S. Tripathy, and A. Mlayah, Opt. Express 19, 5587 (2011).
[CrossRef]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Banaee, M. G.

Bettin, L.

P. Hahmann, L. Bettin, M. Boettcher, U. Denker, T. Elster, S. Jahr, U.-C. Kirschstein, K.-H. Kliem, and B. Schnabel, Microelectron. Eng. 84, 774 (2007).
[CrossRef]

Boettcher, M.

P. Hahmann, L. Bettin, M. Boettcher, U. Denker, T. Elster, S. Jahr, U.-C. Kirschstein, K.-H. Kliem, and B. Schnabel, Microelectron. Eng. 84, 774 (2007).
[CrossRef]

Bryant, G. W.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Crozier, K. B.

Davis, T. J.

Denker, U.

P. Hahmann, L. Bettin, M. Boettcher, U. Denker, T. Elster, S. Jahr, U.-C. Kirschstein, K.-H. Kliem, and B. Schnabel, Microelectron. Eng. 84, 774 (2007).
[CrossRef]

Ebermann, M.

S. Kurth, K. Hiller, N. Neumann, M. Seifert, M. Ebermann, J. Zajadacz, and T. Gessner, Proc. SPIE 7713, 77131S (2010).
[CrossRef]

Elster, T.

P. Hahmann, L. Bettin, M. Boettcher, U. Denker, T. Elster, S. Jahr, U.-C. Kirschstein, K.-H. Kliem, and B. Schnabel, Microelectron. Eng. 84, 774 (2007).
[CrossRef]

Etrich, C.

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, Phys. Rev. B 79, 233107 (2009).
[CrossRef]

Freeman, D.

Fuchs, H.-J.

T. Weber, H.-J. Fuchs, H. Schmidt, E.-B. Kley, and A. Tünnermann, Proc. SPIE 7205, 720504 (2009).
[CrossRef]

García de Abajo, F. J.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Gessner, T.

S. Kurth, K. Hiller, N. Neumann, M. Seifert, M. Ebermann, J. Zajadacz, and T. Gessner, Proc. SPIE 7713, 77131S (2010).
[CrossRef]

Gong, H. M.

H. M. Gong, L. Zhou, X. R. Su, S. Xiao, S. D. Liu, and Q. Q. Wang, Adv. Funct. Mater. 19, 298 (2009).
[CrossRef]

Granqvist, C. G.

Haftel, M. I.

Hahmann, P.

P. Hahmann, L. Bettin, M. Boettcher, U. Denker, T. Elster, S. Jahr, U.-C. Kirschstein, K.-H. Kliem, and B. Schnabel, Microelectron. Eng. 84, 774 (2007).
[CrossRef]

Hanarp, P.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Helgert, C.

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, Phys. Rev. B 79, 233107 (2009).
[CrossRef]

Hiller, K.

S. Kurth, K. Hiller, N. Neumann, M. Seifert, M. Ebermann, J. Zajadacz, and T. Gessner, Proc. SPIE 7713, 77131S (2010).
[CrossRef]

Hunderi, O.

Jahr, S.

P. Hahmann, L. Bettin, M. Boettcher, U. Denker, T. Elster, S. Jahr, U.-C. Kirschstein, K.-H. Kliem, and B. Schnabel, Microelectron. Eng. 84, 774 (2007).
[CrossRef]

Jamieson, D. N.

Käll, M.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Kirschstein, U.-C.

P. Hahmann, L. Bettin, M. Boettcher, U. Denker, T. Elster, S. Jahr, U.-C. Kirschstein, K.-H. Kliem, and B. Schnabel, Microelectron. Eng. 84, 774 (2007).
[CrossRef]

Kley, E.-B.

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, Phys. Rev. B 79, 233107 (2009).
[CrossRef]

T. Weber, H.-J. Fuchs, H. Schmidt, E.-B. Kley, and A. Tünnermann, Proc. SPIE 7205, 720504 (2009).
[CrossRef]

U. D. Zeitner and E.-B. Kley, Proc. SPIE 6290, 629009 (2006).
[CrossRef]

Kliem, K.-H.

P. Hahmann, L. Bettin, M. Boettcher, U. Denker, T. Elster, S. Jahr, U.-C. Kirschstein, K.-H. Kliem, and B. Schnabel, Microelectron. Eng. 84, 774 (2007).
[CrossRef]

Kurth, S.

S. Kurth, K. Hiller, N. Neumann, M. Seifert, M. Ebermann, J. Zajadacz, and T. Gessner, Proc. SPIE 7713, 77131S (2010).
[CrossRef]

Large, N.

Lederer, F.

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, Phys. Rev. B 79, 233107 (2009).
[CrossRef]

Lin, V. K.

Liu, S. D.

H. M. Gong, L. Zhou, X. R. Su, S. Xiao, S. D. Liu, and Q. Q. Wang, Adv. Funct. Mater. 19, 298 (2009).
[CrossRef]

Luther-Davies, B.

Marty, R.

Menzel, C.

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, Phys. Rev. B 79, 233107 (2009).
[CrossRef]

Milicevic, M.

Mlayah, A.

Neumann, N.

S. Kurth, K. Hiller, N. Neumann, M. Seifert, M. Ebermann, J. Zajadacz, and T. Gessner, Proc. SPIE 7713, 77131S (2010).
[CrossRef]

Niklasson, G. A.

Nordlander, P.

P. Nordlander, ACS Nano 3, 488 (2009).
[CrossRef]

Orbons, S. M.

Pertsch, T.

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, Phys. Rev. B 79, 233107 (2009).
[CrossRef]

Roberts, A.

Rockstuhl, C.

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, Phys. Rev. B 79, 233107 (2009).
[CrossRef]

Schlockermann, C.

Schmidt, H.

T. Weber, H.-J. Fuchs, H. Schmidt, E.-B. Kley, and A. Tünnermann, Proc. SPIE 7205, 720504 (2009).
[CrossRef]

Schnabel, B.

P. Hahmann, L. Bettin, M. Boettcher, U. Denker, T. Elster, S. Jahr, U.-C. Kirschstein, K.-H. Kliem, and B. Schnabel, Microelectron. Eng. 84, 774 (2007).
[CrossRef]

Seifert, M.

S. Kurth, K. Hiller, N. Neumann, M. Seifert, M. Ebermann, J. Zajadacz, and T. Gessner, Proc. SPIE 7713, 77131S (2010).
[CrossRef]

Su, X. R.

H. M. Gong, L. Zhou, X. R. Su, S. Xiao, S. D. Liu, and Q. Q. Wang, Adv. Funct. Mater. 19, 298 (2009).
[CrossRef]

Sutherland, D. S.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Teo, S. L.

Tripathy, S.

Tünnermann, A.

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, Phys. Rev. B 79, 233107 (2009).
[CrossRef]

T. Weber, H.-J. Fuchs, H. Schmidt, E.-B. Kley, and A. Tünnermann, Proc. SPIE 7205, 720504 (2009).
[CrossRef]

Wang, Q. Q.

H. M. Gong, L. Zhou, X. R. Su, S. Xiao, S. D. Liu, and Q. Q. Wang, Adv. Funct. Mater. 19, 298 (2009).
[CrossRef]

Weber, T.

T. Weber, H.-J. Fuchs, H. Schmidt, E.-B. Kley, and A. Tünnermann, Proc. SPIE 7205, 720504 (2009).
[CrossRef]

Xiao, S.

H. M. Gong, L. Zhou, X. R. Su, S. Xiao, S. D. Liu, and Q. Q. Wang, Adv. Funct. Mater. 19, 298 (2009).
[CrossRef]

Zajadacz, J.

S. Kurth, K. Hiller, N. Neumann, M. Seifert, M. Ebermann, J. Zajadacz, and T. Gessner, Proc. SPIE 7713, 77131S (2010).
[CrossRef]

Zeitner, U. D.

U. D. Zeitner and E.-B. Kley, Proc. SPIE 6290, 629009 (2006).
[CrossRef]

Zhou, L.

H. M. Gong, L. Zhou, X. R. Su, S. Xiao, S. D. Liu, and Q. Q. Wang, Adv. Funct. Mater. 19, 298 (2009).
[CrossRef]

ACS Nano (1)

P. Nordlander, ACS Nano 3, 488 (2009).
[CrossRef]

Adv. Funct. Mater. (1)

H. M. Gong, L. Zhou, X. R. Su, S. Xiao, S. D. Liu, and Q. Q. Wang, Adv. Funct. Mater. 19, 298 (2009).
[CrossRef]

Appl. Opt. (1)

Microelectron. Eng. (1)

P. Hahmann, L. Bettin, M. Boettcher, U. Denker, T. Elster, S. Jahr, U.-C. Kirschstein, K.-H. Kliem, and B. Schnabel, Microelectron. Eng. 84, 774 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (1)

C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tünnermann, F. Lederer, and T. Pertsch, Phys. Rev. B 79, 233107 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, Phys. Rev. Lett. 90, 057401 (2003).
[CrossRef]

Proc. SPIE (3)

S. Kurth, K. Hiller, N. Neumann, M. Seifert, M. Ebermann, J. Zajadacz, and T. Gessner, Proc. SPIE 7713, 77131S (2010).
[CrossRef]

T. Weber, H.-J. Fuchs, H. Schmidt, E.-B. Kley, and A. Tünnermann, Proc. SPIE 7205, 720504 (2009).
[CrossRef]

U. D. Zeitner and E.-B. Kley, Proc. SPIE 6290, 629009 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Sketch of the DP process: (a) initial layer stack, (b) pillars created by EBL, (c) pillars after ICP etching into chromium and AZ 1505, (d) pillars coated by sputtered aluminum, (e) pattern after removal of aluminum except for the sidewalls by IBE, and (f) resulting rings after removal of AZ 1505 by oxygen plasma.

Fig. 2.
Fig. 2.

SEM images of three different aluminum ring arrays (dimensions, see Table 1). (a) Array 1, top view. (b) Array 2, top view. (c) Array 3, 30° tilted view. (d) Cross section of Array 3 cut by focused ion beam, 30° tilted view.

Fig. 3.
Fig. 3.

Cross section of the effective medium model showing the geometric dimensions.

Fig. 4.
Fig. 4.

Transmittance (upper set of curves) and reflectance spectra (lower set of curves) of the nanoring samples consisting of the nanostructures and the substrate. Solid curves: measured data. Dashed and dotted curves: simulated data with and, respectively, without geometry fluctuations.

Fig. 5.
Fig. 5.

Normalized Ex component of the simulated near-field distribution in the center of ring array 2, where the E-field vector of the incoming light is parallel to the X direction.

Tables (1)

Tables Icon

Table 1. Geometric Dimensions of the Nanoring Arrays

Metrics