Abstract

We present a fiber-optic extrinsic Fabry–Perot interferometer pressure sensor based on a nanothick silver diaphragm. The sensing diaphragm, with a thickness measured in a few hundreds of nanometers, is fabricated by the electroless plating method, which provides a simple fabrication process involving a high-quality diaphragm at a low cost. The sensor exhibits a relatively linear response within the pressure variation range of 0–50 kPa, with a high pressure sensitivity of 70.5 nm/kPa. This sensor is expected to have potential applications in the field of highly sensitive pressure sensors.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Rao, Opt. Fiber Technol. 12, 227 (2006).
    [CrossRef]
  2. D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, IEEE Photon. Technol. Lett. 13, 993 (2001).
    [CrossRef]
  3. K. Totsu, Y. Haga, and M. Esashi, J. Micromech. Microeng. 15, 71 (2005).
    [CrossRef]
  4. W. Wang, N. Wu, Y. Tian, C. Niezrecki, and X. Wang, Opt. Express 18, 9006 (2010).
    [CrossRef]
  5. E. Cibula and D. Donlagic, Appl. Opt. 44, 2736 (2005).
    [CrossRef]
  6. L. H. Chen, C. C. Chan, W. Yuan, S. K. Goh, and J. Sun, Sens. Actuators A 163, 42 (2010).
    [CrossRef]
  7. E. Cibula, S. Pevec, B. Lenardic, E. Pinet, and D. Donlagic, Opt. Express 17, 5098 (2009).
    [CrossRef]
  8. A. Tarraf, J. Daleiden, S. Irmer, D. Prasai, and H. Hillmer, J. Micromech. Microeng. 14, 317 (2004).
    [CrossRef]

2010 (2)

W. Wang, N. Wu, Y. Tian, C. Niezrecki, and X. Wang, Opt. Express 18, 9006 (2010).
[CrossRef]

L. H. Chen, C. C. Chan, W. Yuan, S. K. Goh, and J. Sun, Sens. Actuators A 163, 42 (2010).
[CrossRef]

2009 (1)

2006 (1)

Y. Rao, Opt. Fiber Technol. 12, 227 (2006).
[CrossRef]

2005 (2)

E. Cibula and D. Donlagic, Appl. Opt. 44, 2736 (2005).
[CrossRef]

K. Totsu, Y. Haga, and M. Esashi, J. Micromech. Microeng. 15, 71 (2005).
[CrossRef]

2004 (1)

A. Tarraf, J. Daleiden, S. Irmer, D. Prasai, and H. Hillmer, J. Micromech. Microeng. 14, 317 (2004).
[CrossRef]

2001 (1)

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, IEEE Photon. Technol. Lett. 13, 993 (2001).
[CrossRef]

Abeysinghe, D. C.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, IEEE Photon. Technol. Lett. 13, 993 (2001).
[CrossRef]

Boyd, J. T.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, IEEE Photon. Technol. Lett. 13, 993 (2001).
[CrossRef]

Chan, C. C.

L. H. Chen, C. C. Chan, W. Yuan, S. K. Goh, and J. Sun, Sens. Actuators A 163, 42 (2010).
[CrossRef]

Chen, L. H.

L. H. Chen, C. C. Chan, W. Yuan, S. K. Goh, and J. Sun, Sens. Actuators A 163, 42 (2010).
[CrossRef]

Cibula, E.

Daleiden, J.

A. Tarraf, J. Daleiden, S. Irmer, D. Prasai, and H. Hillmer, J. Micromech. Microeng. 14, 317 (2004).
[CrossRef]

Dasgupta, S.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, IEEE Photon. Technol. Lett. 13, 993 (2001).
[CrossRef]

Donlagic, D.

Esashi, M.

K. Totsu, Y. Haga, and M. Esashi, J. Micromech. Microeng. 15, 71 (2005).
[CrossRef]

Goh, S. K.

L. H. Chen, C. C. Chan, W. Yuan, S. K. Goh, and J. Sun, Sens. Actuators A 163, 42 (2010).
[CrossRef]

Haga, Y.

K. Totsu, Y. Haga, and M. Esashi, J. Micromech. Microeng. 15, 71 (2005).
[CrossRef]

Hillmer, H.

A. Tarraf, J. Daleiden, S. Irmer, D. Prasai, and H. Hillmer, J. Micromech. Microeng. 14, 317 (2004).
[CrossRef]

Irmer, S.

A. Tarraf, J. Daleiden, S. Irmer, D. Prasai, and H. Hillmer, J. Micromech. Microeng. 14, 317 (2004).
[CrossRef]

Jackson, H. E.

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, IEEE Photon. Technol. Lett. 13, 993 (2001).
[CrossRef]

Lenardic, B.

Niezrecki, C.

Pevec, S.

Pinet, E.

Prasai, D.

A. Tarraf, J. Daleiden, S. Irmer, D. Prasai, and H. Hillmer, J. Micromech. Microeng. 14, 317 (2004).
[CrossRef]

Rao, Y.

Y. Rao, Opt. Fiber Technol. 12, 227 (2006).
[CrossRef]

Sun, J.

L. H. Chen, C. C. Chan, W. Yuan, S. K. Goh, and J. Sun, Sens. Actuators A 163, 42 (2010).
[CrossRef]

Tarraf, A.

A. Tarraf, J. Daleiden, S. Irmer, D. Prasai, and H. Hillmer, J. Micromech. Microeng. 14, 317 (2004).
[CrossRef]

Tian, Y.

Totsu, K.

K. Totsu, Y. Haga, and M. Esashi, J. Micromech. Microeng. 15, 71 (2005).
[CrossRef]

Wang, W.

Wang, X.

Wu, N.

Yuan, W.

L. H. Chen, C. C. Chan, W. Yuan, S. K. Goh, and J. Sun, Sens. Actuators A 163, 42 (2010).
[CrossRef]

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, and H. E. Jackson, IEEE Photon. Technol. Lett. 13, 993 (2001).
[CrossRef]

J. Micromech. Microeng. (2)

K. Totsu, Y. Haga, and M. Esashi, J. Micromech. Microeng. 15, 71 (2005).
[CrossRef]

A. Tarraf, J. Daleiden, S. Irmer, D. Prasai, and H. Hillmer, J. Micromech. Microeng. 14, 317 (2004).
[CrossRef]

Opt. Express (2)

Opt. Fiber Technol. (1)

Y. Rao, Opt. Fiber Technol. 12, 227 (2006).
[CrossRef]

Sens. Actuators A (1)

L. H. Chen, C. C. Chan, W. Yuan, S. K. Goh, and J. Sun, Sens. Actuators A 163, 42 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

SEM image (×20,000) of the silver diaphragm.

Fig. 2.
Fig. 2.

Reflectivity of silver diaphragm within the infrared wavelength range.

Fig. 3.
Fig. 3.

(a) Schematic and (b) photograph of the proposed EFPI sensor.

Fig. 4.
Fig. 4.

Reflection spectrum of the EFPI sensor at different cavity lengths: (a) 6 mm, (b) 3 mm, (c) 290 μm, and (d) 60 μm.

Fig. 5.
Fig. 5.

Experiment setup for static pressure response.

Fig. 6.
Fig. 6.

(a) Static pressure response and (b) temperature sensitivity of the proposed sensor.

Metrics