Abstract

We achieved efficient frequency conversion from a 1064 nm subnanosecond pulse pump to a dispersive wave (DW) centered around 1535 nm in a microstructured double core fiber. We experimentally observed that at the output of a 4 m span of fiber almost half of the input pump power was transferred to a 100 nm band around the peak of the DW. Such outstanding conversion efficiency is an outcome of the fiber dispersion curve exhibiting a large normal peak around 1515 nm, which allows for the resonant energy transfer into the DW directly from the solitons which are generated nearby the pump wavelength.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Erkintalo, G. Genty, and J. M. Dudley, Opt. Express 18, 13379 (2010).
    [CrossRef]
  2. B. H. Chapman, J. C. Travers, S. V. Popov, A. Mussot, and A. Kudlinski, Opt. Express 18, 24729 (2010).
    [CrossRef]
  3. S. Roy, S. K. Bhadra, and G. P. Agrawal, Opt. Lett. 34, 2072 (2009).
    [CrossRef]
  4. N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
    [CrossRef]
  5. M. Erkintalo, G. Genty, and J. M. Dudley, Opt. Lett. 35, 658 (2010).
    [CrossRef]
  6. A. Mussot, M. Beaugeois, M. Bouazaoui, and T. Sylvestre, Opt. Express 15, 11553 (2007).
    [CrossRef]
  7. J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, Opt. Express 16, 14435 (2008).
    [CrossRef]
  8. A. Kudlinski, G. Bouwmans, M. Douay, M. Taki, and A. Mussot, J. Lightwave Technol. 27, 1556 (2009).
    [CrossRef]
  9. F. Gérôme, J. L. Auguste, and J. M. Blondy, Opt. Lett. 29, 2725 (2004).
    [CrossRef]
  10. F. Gérôme, J. L. Auguste, S. Février, J. Maury, J. M. Blondy, L. Gasca, and L. Provost, Electron. Lett. 41, 116 (2005).
    [CrossRef]

2010 (3)

2009 (2)

2008 (1)

2007 (1)

2005 (1)

F. Gérôme, J. L. Auguste, S. Février, J. Maury, J. M. Blondy, L. Gasca, and L. Provost, Electron. Lett. 41, 116 (2005).
[CrossRef]

2004 (1)

1995 (1)

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[CrossRef]

Agrawal, G. P.

Akhmediev, N.

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[CrossRef]

Auguste, J. L.

F. Gérôme, J. L. Auguste, S. Février, J. Maury, J. M. Blondy, L. Gasca, and L. Provost, Electron. Lett. 41, 116 (2005).
[CrossRef]

F. Gérôme, J. L. Auguste, and J. M. Blondy, Opt. Lett. 29, 2725 (2004).
[CrossRef]

Beaugeois, M.

Bhadra, S. K.

Blondy, J. M.

F. Gérôme, J. L. Auguste, S. Février, J. Maury, J. M. Blondy, L. Gasca, and L. Provost, Electron. Lett. 41, 116 (2005).
[CrossRef]

F. Gérôme, J. L. Auguste, and J. M. Blondy, Opt. Lett. 29, 2725 (2004).
[CrossRef]

Bouazaoui, M.

Bouwmans, G.

Chapman, B. H.

Cumberland, B. A.

Douay, M.

Dudley, J. M.

Erkintalo, M.

Février, S.

F. Gérôme, J. L. Auguste, S. Février, J. Maury, J. M. Blondy, L. Gasca, and L. Provost, Electron. Lett. 41, 116 (2005).
[CrossRef]

Gasca, L.

F. Gérôme, J. L. Auguste, S. Février, J. Maury, J. M. Blondy, L. Gasca, and L. Provost, Electron. Lett. 41, 116 (2005).
[CrossRef]

Genty, G.

Gérôme, F.

F. Gérôme, J. L. Auguste, S. Février, J. Maury, J. M. Blondy, L. Gasca, and L. Provost, Electron. Lett. 41, 116 (2005).
[CrossRef]

F. Gérôme, J. L. Auguste, and J. M. Blondy, Opt. Lett. 29, 2725 (2004).
[CrossRef]

Karlsson, M.

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[CrossRef]

Kudlinski, A.

Maury, J.

F. Gérôme, J. L. Auguste, S. Février, J. Maury, J. M. Blondy, L. Gasca, and L. Provost, Electron. Lett. 41, 116 (2005).
[CrossRef]

Mussot, A.

Popov, S. V.

Provost, L.

F. Gérôme, J. L. Auguste, S. Février, J. Maury, J. M. Blondy, L. Gasca, and L. Provost, Electron. Lett. 41, 116 (2005).
[CrossRef]

Roy, S.

Rulkov, A. B.

Sylvestre, T.

Taki, M.

Taylor, J. R.

Travers, J. C.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Dual concentric core fiber cross section SEM image.

Fig. 2.
Fig. 2.

Blue solid line: numerically calculated GVD of the fundamental mode. Dashed vertical lines: ZDWs.

Fig. 3.
Fig. 3.

(a) Measured spectrum at the fiber output (z=4m) for an injected peak power of 4 kW. (b) Numerically calculated spectrum for a peak power of 1.5 kW. The dashed vertical line indicates the DW wavelength predicted by the phase-matching condition.

Fig. 4.
Fig. 4.

Calculated spectrograms: (a) z=0.8m and (b) z=4m. The ZDWs are indicated by stripes. The temporal (red) and spectral (black) shapes are shown, as well; light blue and yellow backgrounds highlight normal and anomalous dispersion spectral regions and the red line is the group delay.

Fig. 5.
Fig. 5.

(a) Measured spectra for an input peak power of 4 kW at five distances: z=0.3, 0.5, 0.7, 0.9, and 1.2 m. (b) Corresponding numerically calculated spectra for an input peak power of 1.5 kW.

Metrics