Abstract

Optoacoustic (photoacoustic) mesoscopic and microscopic imaging is often implemented by linearly scanning a spherically focused ultrasound transducer. In this case, the resolution and sensitivity along the scan direction are limited by diffraction and therefore degrade rapidly for imaging depths away from the focal point. Partial restoration of the lost resolution can be achieved by using data-processing techniques, such as the virtual detector delay-and-sum method. However, these techniques are based on an approximate description of the detector properties, which limits the improvement in image quality they achieve. Herein we propose a reconstruction method based on an exact model of the optoacoustic generation and propagation that incorporates the spatial response of the sensor. The proposed method shows superior imaging performance over previously considered techniques.

© 2012 Optical Society of America

Full Article  |  PDF Article
Related Articles
Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner

Jan Laufer, Edward Zhang, Gennadij Raivich, and Paul Beard
Appl. Opt. 48(10) D299-D306 (2009)

Optoacoustic tomography with varying illumination and non-uniform detection patterns

Thomas Jetzfellner, Amir Rosenthal, Andreas Buehler, Alexander Dima, Karl-Hans Englmeier, Vasilis Ntziachristos, and Daniel Razansky
J. Opt. Soc. Am. A 27(11) 2488-2495 (2010)

Model-based correction of finite aperture effect in photoacoustic tomography

Meng-Lin Li, Yi-Chieh Tseng, and Chung-Chih Cheng
Opt. Express 18(25) 26285-26292 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription