Abstract

We present a technique to quantitatively image the phase of thin quasi-transparent samples using extended source incoherent illumination and off-axis detection apertures. Our technique is achromatic and polarization independent, requires no active elements, and can be readily adapted to standard bright-field microscopes. We demonstrate our technique by quantitatively reconstructing the phase of cheek cells and a microlens. The light efficient, single-shot nature of our technique enables phase imaging at frame rates that are camera limited.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Popescu, L. P. DeFlores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, Opt. Lett. 29, 2503 (2004).
    [CrossRef]
  2. S. Bernet, A. Jesacher, S. Fuerhapter, C. Maurer, and M. Ritsch-Marte, Opt. Express 14, 3792 (2006).
    [CrossRef]
  3. M. Novak, J. Millerd, N. Brock, M. North-Morris, J. Hayes, and J. Wyant, Appl. Opt. 44, 6861 (2005).
    [CrossRef]
  4. D. O. Hogenboom, C. A. DiMarzio, T. J. Gaudette, A. J. Devaney, and S. C. Lindberg, Opt. Lett. 23, 783 (1998).
    [CrossRef]
  5. E. Cuche, P. Marquet, and C. Depeursinge, Appl. Opt. 38, 6994 (1999).
    [CrossRef]
  6. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, Opt. Express 17, 13080 (2009).
    [CrossRef]
  7. M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, J. Microsc. 214, 7 (2004).
    [CrossRef]
  8. M. Shribak, J. LaFountain, D. Biggs, and S. Inoue, J. Biomed. Opt. 13, 014011 (2008).
    [CrossRef]
  9. D. Paganin and K. A. Nugent, Phys. Rev. Lett. 80, 2586 (1998).
    [CrossRef]
  10. S. S. Kou, L. Waller, G. Barbastathis, and C. J. R. Sheppard, Opt. Lett. 35, 447 (2010).
    [CrossRef]
  11. W. C. Stewart, J. Opt. Soc. Am. 66, 813 (1976).
    [CrossRef]
  12. R. Yi, K. K. Chu, and J. Mertz, Opt. Express 14, 5191 (2006).
    [CrossRef]
  13. S. B. Mehta and C. J. R. Sheppard, Opt. Lett. 34, 1924 (2009).
    [CrossRef]
  14. S. Lowenthal and Y. Belvaux, Appl. Phys. Lett. 11, 49 (1967).
    [CrossRef]
  15. I. Iglesias, Opt. Lett. 36, 3636 (2011).
    [CrossRef]
  16. N. Streibl, Opt. Commun. 49, 6 (1984).
    [CrossRef]

2011

2010

2009

2008

M. Shribak, J. LaFountain, D. Biggs, and S. Inoue, J. Biomed. Opt. 13, 014011 (2008).
[CrossRef]

2006

2005

2004

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, J. Microsc. 214, 7 (2004).
[CrossRef]

G. Popescu, L. P. DeFlores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, Opt. Lett. 29, 2503 (2004).
[CrossRef]

1999

1998

1984

N. Streibl, Opt. Commun. 49, 6 (1984).
[CrossRef]

1976

1967

S. Lowenthal and Y. Belvaux, Appl. Phys. Lett. 11, 49 (1967).
[CrossRef]

Arnison, M. R.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, J. Microsc. 214, 7 (2004).
[CrossRef]

Badizadegan, K.

Barbastathis, G.

Belvaux, Y.

S. Lowenthal and Y. Belvaux, Appl. Phys. Lett. 11, 49 (1967).
[CrossRef]

Bernet, S.

Biggs, D.

M. Shribak, J. LaFountain, D. Biggs, and S. Inoue, J. Biomed. Opt. 13, 014011 (2008).
[CrossRef]

Bon, P.

Brock, N.

Chu, K. K.

Cogswell, C. J.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, J. Microsc. 214, 7 (2004).
[CrossRef]

Cuche, E.

Dasari, R. R.

DeFlores, L. P.

Depeursinge, C.

Devaney, A. J.

DiMarzio, C. A.

Feld, M. S.

Fuerhapter, S.

Gaudette, T. J.

Hayes, J.

Hogenboom, D. O.

Iglesias, I.

Inoue, S.

M. Shribak, J. LaFountain, D. Biggs, and S. Inoue, J. Biomed. Opt. 13, 014011 (2008).
[CrossRef]

Iwai, H.

Jesacher, A.

Kou, S. S.

LaFountain, J.

M. Shribak, J. LaFountain, D. Biggs, and S. Inoue, J. Biomed. Opt. 13, 014011 (2008).
[CrossRef]

Larkin, K. G.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, J. Microsc. 214, 7 (2004).
[CrossRef]

Lindberg, S. C.

Lowenthal, S.

S. Lowenthal and Y. Belvaux, Appl. Phys. Lett. 11, 49 (1967).
[CrossRef]

Marquet, P.

Maucort, G.

Maurer, C.

Mehta, S. B.

Mertz, J.

Millerd, J.

Monneret, S.

North-Morris, M.

Novak, M.

Nugent, K. A.

D. Paganin and K. A. Nugent, Phys. Rev. Lett. 80, 2586 (1998).
[CrossRef]

Paganin, D.

D. Paganin and K. A. Nugent, Phys. Rev. Lett. 80, 2586 (1998).
[CrossRef]

Popescu, G.

Ritsch-Marte, M.

Sheppard, C. J. R.

Shribak, M.

M. Shribak, J. LaFountain, D. Biggs, and S. Inoue, J. Biomed. Opt. 13, 014011 (2008).
[CrossRef]

Smith, N. I.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, J. Microsc. 214, 7 (2004).
[CrossRef]

Stewart, W. C.

Streibl, N.

N. Streibl, Opt. Commun. 49, 6 (1984).
[CrossRef]

Vaughan, J. C.

Waller, L.

Wattellier, B.

Wyant, J.

Yi, R.

Appl. Opt.

Appl. Phys. Lett.

S. Lowenthal and Y. Belvaux, Appl. Phys. Lett. 11, 49 (1967).
[CrossRef]

J. Biomed. Opt.

M. Shribak, J. LaFountain, D. Biggs, and S. Inoue, J. Biomed. Opt. 13, 014011 (2008).
[CrossRef]

J. Microsc.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, J. Microsc. 214, 7 (2004).
[CrossRef]

J. Opt. Soc. Am.

Opt. Commun.

N. Streibl, Opt. Commun. 49, 6 (1984).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

D. Paganin and K. A. Nugent, Phys. Rev. Lett. 80, 2586 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

PAW imaging device combined with a standard transillumination microscope. NAi, illumination NA (square aperture); C, condenser; S, sample; Obj, objective; NAd, detection NA; TL, tube lens; IP, intermediate image plane; EP, PAW entrance plane; θ, sample-induced wavefront tilt at sample plane. Entrance lens has focal length fe; quatrefoil lenses have focal lengths fPAW. Dashed lines: light path through sample origin with zero local tilt. Shaded region: tilted light path due to local sample phase gradient. Inset: PAW lens array with projection of illumination aperture—size a=2NAife/M. Wavefront tilt leads to a projection displacement δy=θfe/M (shown along y only).

Fig. 2.
Fig. 2.

Simultaneously acquired oblique detection images of cheek cells as recorded by the camera (one image per quadrant). Images have been cropped (481×481 pixels) and coregistered based on their edge locations. Scale bar: 20 μm.

Fig. 3.
Fig. 3.

(a),(b) Quantitative measurement of wavefront tilt angles θx and θy from cheek cells (milliradians). (c) Quantitative reconstructed phase image of the cheek cells (radians). Scale bar: 20 μm.

Fig. 4.
Fig. 4.

Reconstructed phase image (a) and profile of measured phase (b) of a lens from a microlens array (radians). Phase profile is overlaid with a parabolic fit. Scale bar: 20 μm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[θx(x,y)θy(x,y)]=NAiIT[I1+I2I3I4I1I2I3+I4],
∇⃗ϕ(x,y)=2πλ¯θ⃗(x,y),
SNRx,yθx,yITIT(NAi2θx,y2)+4σr2(NAi2+θx,y2),
ϕ(x,y)=Im[F1{F{G(x,y)×FOV}2π(κx+iκy)|κ|0C|κ|=0}],

Metrics