Abstract

We present a technique to quantitatively image the phase of thin quasi-transparent samples using extended source incoherent illumination and off-axis detection apertures. Our technique is achromatic and polarization independent, requires no active elements, and can be readily adapted to standard bright-field microscopes. We demonstrate our technique by quantitatively reconstructing the phase of cheek cells and a microlens. The light efficient, single-shot nature of our technique enables phase imaging at frame rates that are camera limited.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-resolution 3D phase imaging using a partitioned detection aperture: a wave-optic analysis

Roman Barankov, Jean-Charles Baritaux, and Jerome Mertz
J. Opt. Soc. Am. A 32(11) 2123-2135 (2015)

Single-exposure surface profilometry using partitioned aperture wavefront imaging

Roman Barankov and Jerome Mertz
Opt. Lett. 38(19) 3961-3964 (2013)

Quantitative phase imaging of live cells using fast Fourier phase microscopy

Niyom Lue, Wonshik Choi, Gabriel Popescu, Takahiro Ikeda, Ramachandra R. Dasari, Kamran Badizadegan, and Michael S. Feld
Appl. Opt. 46(10) 1836-1842 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription