Abstract

A design of microfluidic devices is presented to integrate single-mode, liquid-core waveguides with microfluidic channels that generate and deliver disklike emulsion microdroplet cavities doped with an organic dye. The microcavity modes can be directly coupled to the liquid waveguide. Cavity-enhanced spontaneous emission was observed at the waveguide with low pump pulse energy.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. D. Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, Phys. Rev. Lett. 59, 2955 (1987).
    [CrossRef]
  2. B. Helbo, A. Kristensen, and A. Menon, J. Micromech. Microeng. 13, 307 (2003).
    [CrossRef]
  3. Y. Chen, Z. Li, Z. Zhang, D. Psaltis, and A. Scherer, Appl. Phys. Lett. 91, 051109 (2007).
    [CrossRef]
  4. I. M. White, H. Oveys, and X. D. Fan, Opt. Lett. 31, 1319 (2006).
    [CrossRef]
  5. J. D. Suter, W. Lee, D. J. Howard, E. Hoppmann, I. M. White, and X. D. Fan, Opt. Lett. 35, 2997 (2010).
    [CrossRef]
  6. S. K. Y. Tang, Z. Y. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, Lab Chip 9, 2767 (2009).
    [CrossRef]
  7. Y. Sun, J. D. Suter, and X. D. Fan, Opt. Lett. 34, 1042 (2009).
    [CrossRef]
  8. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
  9. B. E. Little, J. P. Laine, and H. A. Haus, J. Lightwave Technol. 17, 704 (1999).
    [CrossRef]
  10. C. N. Baroud, F. Gallaire, and R. Dangla, Lab Chip 10, 2032 (2010).
    [CrossRef]
  11. R. A. Soref, J. Schmidtchen, and K. Petermann, IEEE J. Quantum Electron. 27, 1971 (1991).
    [CrossRef]
  12. M. Oxborrow, in Laser Resonators and Beam Control IX, A. V. Kudryashov, A. H. Paxton, and V. S. IlChenko, eds. (SPIE, 2007), p. J4520.

2010

2009

S. K. Y. Tang, Z. Y. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, Lab Chip 9, 2767 (2009).
[CrossRef]

Y. Sun, J. D. Suter, and X. D. Fan, Opt. Lett. 34, 1042 (2009).
[CrossRef]

2007

Y. Chen, Z. Li, Z. Zhang, D. Psaltis, and A. Scherer, Appl. Phys. Lett. 91, 051109 (2007).
[CrossRef]

2006

2003

B. Helbo, A. Kristensen, and A. Menon, J. Micromech. Microeng. 13, 307 (2003).
[CrossRef]

1999

1991

R. A. Soref, J. Schmidtchen, and K. Petermann, IEEE J. Quantum Electron. 27, 1971 (1991).
[CrossRef]

1987

F. D. Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, Phys. Rev. Lett. 59, 2955 (1987).
[CrossRef]

Abate, A. R.

S. K. Y. Tang, Z. Y. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, Lab Chip 9, 2767 (2009).
[CrossRef]

Agresti, J. J.

S. K. Y. Tang, Z. Y. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, Lab Chip 9, 2767 (2009).
[CrossRef]

Baroud, C. N.

C. N. Baroud, F. Gallaire, and R. Dangla, Lab Chip 10, 2032 (2010).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

Chen, Y.

Y. Chen, Z. Li, Z. Zhang, D. Psaltis, and A. Scherer, Appl. Phys. Lett. 91, 051109 (2007).
[CrossRef]

Dangla, R.

C. N. Baroud, F. Gallaire, and R. Dangla, Lab Chip 10, 2032 (2010).
[CrossRef]

Fan, X. D.

Gallaire, F.

C. N. Baroud, F. Gallaire, and R. Dangla, Lab Chip 10, 2032 (2010).
[CrossRef]

Haus, H. A.

Helbo, B.

B. Helbo, A. Kristensen, and A. Menon, J. Micromech. Microeng. 13, 307 (2003).
[CrossRef]

Hoppmann, E.

Howard, D. J.

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

Innocenti, G.

F. D. Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, Phys. Rev. Lett. 59, 2955 (1987).
[CrossRef]

Jacobovitz, G. R.

F. D. Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, Phys. Rev. Lett. 59, 2955 (1987).
[CrossRef]

Kristensen, A.

B. Helbo, A. Kristensen, and A. Menon, J. Micromech. Microeng. 13, 307 (2003).
[CrossRef]

Laine, J. P.

Lee, W.

Li, Z.

Y. Chen, Z. Li, Z. Zhang, D. Psaltis, and A. Scherer, Appl. Phys. Lett. 91, 051109 (2007).
[CrossRef]

Li, Z. Y.

S. K. Y. Tang, Z. Y. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, Lab Chip 9, 2767 (2009).
[CrossRef]

Little, B. E.

Martini, F. D.

F. D. Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, Phys. Rev. Lett. 59, 2955 (1987).
[CrossRef]

Mataloni, P.

F. D. Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, Phys. Rev. Lett. 59, 2955 (1987).
[CrossRef]

Menon, A.

B. Helbo, A. Kristensen, and A. Menon, J. Micromech. Microeng. 13, 307 (2003).
[CrossRef]

Oveys, H.

Oxborrow, M.

M. Oxborrow, in Laser Resonators and Beam Control IX, A. V. Kudryashov, A. H. Paxton, and V. S. IlChenko, eds. (SPIE, 2007), p. J4520.

Petermann, K.

R. A. Soref, J. Schmidtchen, and K. Petermann, IEEE J. Quantum Electron. 27, 1971 (1991).
[CrossRef]

Psaltis, D.

S. K. Y. Tang, Z. Y. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, Lab Chip 9, 2767 (2009).
[CrossRef]

Y. Chen, Z. Li, Z. Zhang, D. Psaltis, and A. Scherer, Appl. Phys. Lett. 91, 051109 (2007).
[CrossRef]

Scherer, A.

Y. Chen, Z. Li, Z. Zhang, D. Psaltis, and A. Scherer, Appl. Phys. Lett. 91, 051109 (2007).
[CrossRef]

Schmidtchen, J.

R. A. Soref, J. Schmidtchen, and K. Petermann, IEEE J. Quantum Electron. 27, 1971 (1991).
[CrossRef]

Soref, R. A.

R. A. Soref, J. Schmidtchen, and K. Petermann, IEEE J. Quantum Electron. 27, 1971 (1991).
[CrossRef]

Sun, Y.

Suter, J. D.

Tang, S. K. Y.

S. K. Y. Tang, Z. Y. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, Lab Chip 9, 2767 (2009).
[CrossRef]

Weitz, D. A.

S. K. Y. Tang, Z. Y. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, Lab Chip 9, 2767 (2009).
[CrossRef]

White, I. M.

Whitesides, G. M.

S. K. Y. Tang, Z. Y. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, Lab Chip 9, 2767 (2009).
[CrossRef]

Zhang, Z.

Y. Chen, Z. Li, Z. Zhang, D. Psaltis, and A. Scherer, Appl. Phys. Lett. 91, 051109 (2007).
[CrossRef]

Appl. Phys. Lett.

Y. Chen, Z. Li, Z. Zhang, D. Psaltis, and A. Scherer, Appl. Phys. Lett. 91, 051109 (2007).
[CrossRef]

IEEE J. Quantum Electron.

R. A. Soref, J. Schmidtchen, and K. Petermann, IEEE J. Quantum Electron. 27, 1971 (1991).
[CrossRef]

J. Lightwave Technol.

J. Micromech. Microeng.

B. Helbo, A. Kristensen, and A. Menon, J. Micromech. Microeng. 13, 307 (2003).
[CrossRef]

Lab Chip

C. N. Baroud, F. Gallaire, and R. Dangla, Lab Chip 10, 2032 (2010).
[CrossRef]

S. K. Y. Tang, Z. Y. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, Lab Chip 9, 2767 (2009).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

F. D. Martini, G. Innocenti, G. R. Jacobovitz, and P. Mataloni, Phys. Rev. Lett. 59, 2955 (1987).
[CrossRef]

Other

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

M. Oxborrow, in Laser Resonators and Beam Control IX, A. V. Kudryashov, A. H. Paxton, and V. S. IlChenko, eds. (SPIE, 2007), p. J4520.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Architecture of the microfluidic chip containing microfluidic channels as well as a liquid-core waveguide. Two immiscible liquids are injected through the inlets. The dispersion-phase flow mixed with Rhodamine 6G (R6G) is squeezed by two continuous-phase flows to yield microdroplets. The microdroplets then pass through a liquid-core waveguide to the output chamber. At the joint of the microfluidic channel and the liquid-core waveguide, a laser beam is focused and pumps the microdroplets.

Fig. 2.
Fig. 2.

(a) Cross-sectional view of line AA in Fig. 1. Both the top and bottom plates are made by transparent PDMS. The microfluidic channel and the waveguide core are filled with mineral oil. The optical fields of the waveguide mode and WGM are shown in (b) and (c), respectively.

Fig. 3.
Fig. 3.

Optical microscope images of (a) waveguide cross section filled with benzyl alcohol and (b) top view at the junction of the waveguide and the microfluidic channel.

Fig. 4.
Fig. 4.

Photoluminescence of optofluidic pumping experiment: (a) a R6G-dyed laminar flow passing though a liquid-core waveguide, (b) R6G-dyed microdroplets passing through a microfluidic channel (no rib), and (c) R6G-dyed microdroplets passing through a liquid-core waveguide. The pump pulse energy is around 0.55 mJ.

Fig. 5.
Fig. 5.

Optical spectrum records under 0.173 mJ pumping energy when droplets approach the liquid base rib waveguide.

Fig. 6.
Fig. 6.

Peak intensity of measured PL spectra as a function of the pulse energy density.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Em(r)={AJm(klndr)rRdBJm(klndR0)exp[αd(rR0)]r>Rd,

Metrics