Abstract

We propose and experimentally demonstrate a simplified coherent receiver based on heterodyne detection with only two balanced photodetectors and two analog-to-digital converters. The polarization diversity hybrid can be simplified relative to the conventional one. The detected intermediate frequency signals are first downconverted to baseband with inphase and quadrature separation. Using this scheme, we successfully demonstrated the eight-channel 50Gb/s polarization division multiplexed quadrature phase shift keying WDM signal with heterodyne detection based on digital signal processing over 1040 km single-mode fiber 28 with erbium-doped fiber amplifier only amplification.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, Opt. Express 16, 753 (2008).
    [CrossRef]
  2. S. J. Savory, IEEE J. Sel. Top. Quantum Electron. 16, 1164 (2010).
    [CrossRef]
  3. X. Zhou and J. Yu, J. Lightwave Technol. 27, 3641 (2009).
    [CrossRef]
  4. J. Yu, Z. Dong, H. Chien, Y. Shao, and N. Chi, IEEE Photon. Technol. Lett. 24, 264 (2012).
    [CrossRef]
  5. L. G. Kazovsky, J. Opt. Commun. 6, 18 (1985).
    [CrossRef]
  6. R. Zhu, K. Xu, Y. Zhang, Y. Li, J. Wu, X. Hong, and J. Lin, in Proceedings of APMP (2008), pp. 165–168.
  7. M. Yoshida, H. Goto, K. Kasai, and M. Nakazawa, Opt. Express 16, 829 (2008).
    [CrossRef]
  8. X. Pang, A. Caballero, and A. Dogadaev, IEEE Photon. J. 4, 691 (2012).
    [CrossRef]

2012

J. Yu, Z. Dong, H. Chien, Y. Shao, and N. Chi, IEEE Photon. Technol. Lett. 24, 264 (2012).
[CrossRef]

X. Pang, A. Caballero, and A. Dogadaev, IEEE Photon. J. 4, 691 (2012).
[CrossRef]

2010

S. J. Savory, IEEE J. Sel. Top. Quantum Electron. 16, 1164 (2010).
[CrossRef]

2009

2008

1985

L. G. Kazovsky, J. Opt. Commun. 6, 18 (1985).
[CrossRef]

Barros, D. J. F.

Caballero, A.

X. Pang, A. Caballero, and A. Dogadaev, IEEE Photon. J. 4, 691 (2012).
[CrossRef]

Chi, N.

J. Yu, Z. Dong, H. Chien, Y. Shao, and N. Chi, IEEE Photon. Technol. Lett. 24, 264 (2012).
[CrossRef]

Chien, H.

J. Yu, Z. Dong, H. Chien, Y. Shao, and N. Chi, IEEE Photon. Technol. Lett. 24, 264 (2012).
[CrossRef]

Dogadaev, A.

X. Pang, A. Caballero, and A. Dogadaev, IEEE Photon. J. 4, 691 (2012).
[CrossRef]

Dong, Z.

J. Yu, Z. Dong, H. Chien, Y. Shao, and N. Chi, IEEE Photon. Technol. Lett. 24, 264 (2012).
[CrossRef]

Goto, H.

Hong, X.

R. Zhu, K. Xu, Y. Zhang, Y. Li, J. Wu, X. Hong, and J. Lin, in Proceedings of APMP (2008), pp. 165–168.

Ip, E.

Kahn, J. M.

Kasai, K.

Kazovsky, L. G.

L. G. Kazovsky, J. Opt. Commun. 6, 18 (1985).
[CrossRef]

Lau, A. P. T.

Li, Y.

R. Zhu, K. Xu, Y. Zhang, Y. Li, J. Wu, X. Hong, and J. Lin, in Proceedings of APMP (2008), pp. 165–168.

Lin, J.

R. Zhu, K. Xu, Y. Zhang, Y. Li, J. Wu, X. Hong, and J. Lin, in Proceedings of APMP (2008), pp. 165–168.

Nakazawa, M.

Pang, X.

X. Pang, A. Caballero, and A. Dogadaev, IEEE Photon. J. 4, 691 (2012).
[CrossRef]

Savory, S. J.

S. J. Savory, IEEE J. Sel. Top. Quantum Electron. 16, 1164 (2010).
[CrossRef]

Shao, Y.

J. Yu, Z. Dong, H. Chien, Y. Shao, and N. Chi, IEEE Photon. Technol. Lett. 24, 264 (2012).
[CrossRef]

Wu, J.

R. Zhu, K. Xu, Y. Zhang, Y. Li, J. Wu, X. Hong, and J. Lin, in Proceedings of APMP (2008), pp. 165–168.

Xu, K.

R. Zhu, K. Xu, Y. Zhang, Y. Li, J. Wu, X. Hong, and J. Lin, in Proceedings of APMP (2008), pp. 165–168.

Yoshida, M.

Yu, J.

J. Yu, Z. Dong, H. Chien, Y. Shao, and N. Chi, IEEE Photon. Technol. Lett. 24, 264 (2012).
[CrossRef]

X. Zhou and J. Yu, J. Lightwave Technol. 27, 3641 (2009).
[CrossRef]

Zhang, Y.

R. Zhu, K. Xu, Y. Zhang, Y. Li, J. Wu, X. Hong, and J. Lin, in Proceedings of APMP (2008), pp. 165–168.

Zhou, X.

Zhu, R.

R. Zhu, K. Xu, Y. Zhang, Y. Li, J. Wu, X. Hong, and J. Lin, in Proceedings of APMP (2008), pp. 165–168.

IEEE J. Sel. Top. Quantum Electron.

S. J. Savory, IEEE J. Sel. Top. Quantum Electron. 16, 1164 (2010).
[CrossRef]

IEEE Photon. J.

X. Pang, A. Caballero, and A. Dogadaev, IEEE Photon. J. 4, 691 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Yu, Z. Dong, H. Chien, Y. Shao, and N. Chi, IEEE Photon. Technol. Lett. 24, 264 (2012).
[CrossRef]

J. Lightwave Technol.

J. Opt. Commun.

L. G. Kazovsky, J. Opt. Commun. 6, 18 (1985).
[CrossRef]

Opt. Express

Other

R. Zhu, K. Xu, Y. Zhang, Y. Li, J. Wu, X. Hong, and J. Lin, in Proceedings of APMP (2008), pp. 165–168.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Principle of simplified coherent receiver with heterodyne detection.

Fig. 2.
Fig. 2.

Experimental setup for simplified coherent receiver with heterodyne detection of eight-channel 50 Gb / s PDM-QPSK WDM signal after 1040 km SMF-28 transmission.

Fig. 3.
Fig. 3.

Optical spectrum of eight-channel 50 Gb / s PDM-QPSK signal (a) before and (b) after 1040 km transmission.

Fig. 4.
Fig. 4.

Optical spectrum of eight-channel 50 Gb / s PDM-QPSK signal with LO measured before balanced detectors without TOF for (a) back-to-back and (b) 1040 km transmission.

Fig. 5.
Fig. 5.

Electrical spectrum of received IF signals with 22 GHz frequency offset after balanced detector and bandpass EA.

Fig. 6.
Fig. 6.

DSP for received signals after ADCs.

Fig. 7.
Fig. 7.

Back-to-back BER performance and after 1040 km transmission BER performance as a function of OSNR.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E S = P s exp [ j 2 π f S t + φ S ( t ) ] ,
E LO = P LO exp [ j 2 π f LO t + φ LO ( t ) ] ,
I BPD = 2 R P S P LO cos [ 2 π f IF t + φ S ( t ) φ LO ( t ) ] ,
SNR He = S He N He = 2 × 0.5 I BPD 2 2 B W ζ = 2 P S P LO R 2 / B W ζ .
I BPD _ i / q = 2 R P S P LO cos [ φ S ( t ) φ LO ( t ) ] .
SNR Ho = S Ho N Ho = I BPD _ i / q 2 B W ζ = 4 P S P LO R 2 / B W ζ ,

Metrics