Abstract

A single-shot quadrature phase-shifting interferometry architecture is presented that is applicable to antenna coupled detector technologies. The method is based on orthogonally polarized object and reference beams and on linear and circular polarization sensitive antennas in space-division multiplexing. The technique can be adapted to two-, three-, and four-step and Gabor holography recordings. It is also demonstrated that the space-division multiplexing does not necessarily cause sparse sampling. A sub-THz detector array is presented containing multiple on-chip antennas and FET plasma wave detectors implemented in a 90 nm complementary metal-oxide semiconductor technology. As an example, two-step phase-shifting reconstruction results are given at 360 GHz.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Pfeiffer, E. Ojefors, A. Lisauskas, D. Glaab, F. Voltolina, V. Nzogang, P. Bolivar, and H. Roskos, in 33rd International Conference on Infrared, Millimeter and Terahertz Waves, 2008. IRMMW-THz 2008 (IEEE, 2008), pp. 1–3.
    [CrossRef]
  2. S. Preu, S. Kim, R. Verma, P. Burke, N. Vinh, M. Sherwin, and A. Gossard, IEEE Trans. THz Sci. Technol. 2, 278 (2012).
  3. J. Johnson, T. Dorney, and D. Mittleman, Appl. Phys. Lett. 78, 835 (2001).
  4. S.-H. Ding, Q. Li, Y.-D. Li, and Q. Wang, Opt. Lett. 36, 1993 (2011).
    [CrossRef]
  5. Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, Strain 44, 380 (2008).
    [CrossRef]
  6. J. Liu and T. Poon, Opt. Lett. 34, 250 (2009).
    [CrossRef]
  7. S. Lai, B. King, and M. Neifeld, Opt. Commun. 173, 155 (2000).
    [CrossRef]
  8. S. Lai and M. Neifeld, Opt. Commun. 178, 283 (2000).
    [CrossRef]
  9. F. González and G. Boreman, Infrared Phys. Technol. 46, 418 (2005).
    [CrossRef]
  10. R. Johnson and H. Jasik, Antenna Engineering Handbook (McGraw-Hill, 1984), Vol. 1.
  11. P. Földesy, D. Gergelyi, C. Füzy, and G. Károlyi, in 2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS) (IEEE, 2012), pp. 101–104.

2012 (1)

S. Preu, S. Kim, R. Verma, P. Burke, N. Vinh, M. Sherwin, and A. Gossard, IEEE Trans. THz Sci. Technol. 2, 278 (2012).

2011 (1)

2009 (1)

2008 (1)

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, Strain 44, 380 (2008).
[CrossRef]

2005 (1)

F. González and G. Boreman, Infrared Phys. Technol. 46, 418 (2005).
[CrossRef]

2001 (1)

J. Johnson, T. Dorney, and D. Mittleman, Appl. Phys. Lett. 78, 835 (2001).

2000 (2)

S. Lai, B. King, and M. Neifeld, Opt. Commun. 173, 155 (2000).
[CrossRef]

S. Lai and M. Neifeld, Opt. Commun. 178, 283 (2000).
[CrossRef]

Bolivar, P.

U. Pfeiffer, E. Ojefors, A. Lisauskas, D. Glaab, F. Voltolina, V. Nzogang, P. Bolivar, and H. Roskos, in 33rd International Conference on Infrared, Millimeter and Terahertz Waves, 2008. IRMMW-THz 2008 (IEEE, 2008), pp. 1–3.
[CrossRef]

Boreman, G.

F. González and G. Boreman, Infrared Phys. Technol. 46, 418 (2005).
[CrossRef]

Burke, P.

S. Preu, S. Kim, R. Verma, P. Burke, N. Vinh, M. Sherwin, and A. Gossard, IEEE Trans. THz Sci. Technol. 2, 278 (2012).

Cui, Y.

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, Strain 44, 380 (2008).
[CrossRef]

Ding, S.-H.

Dorney, T.

J. Johnson, T. Dorney, and D. Mittleman, Appl. Phys. Lett. 78, 835 (2001).

Földesy, P.

P. Földesy, D. Gergelyi, C. Füzy, and G. Károlyi, in 2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS) (IEEE, 2012), pp. 101–104.

Füzy, C.

P. Földesy, D. Gergelyi, C. Füzy, and G. Károlyi, in 2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS) (IEEE, 2012), pp. 101–104.

Gergelyi, D.

P. Földesy, D. Gergelyi, C. Füzy, and G. Károlyi, in 2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS) (IEEE, 2012), pp. 101–104.

Glaab, D.

U. Pfeiffer, E. Ojefors, A. Lisauskas, D. Glaab, F. Voltolina, V. Nzogang, P. Bolivar, and H. Roskos, in 33rd International Conference on Infrared, Millimeter and Terahertz Waves, 2008. IRMMW-THz 2008 (IEEE, 2008), pp. 1–3.
[CrossRef]

González, F.

F. González and G. Boreman, Infrared Phys. Technol. 46, 418 (2005).
[CrossRef]

Gossard, A.

S. Preu, S. Kim, R. Verma, P. Burke, N. Vinh, M. Sherwin, and A. Gossard, IEEE Trans. THz Sci. Technol. 2, 278 (2012).

Jasik, H.

R. Johnson and H. Jasik, Antenna Engineering Handbook (McGraw-Hill, 1984), Vol. 1.

Johnson, J.

J. Johnson, T. Dorney, and D. Mittleman, Appl. Phys. Lett. 78, 835 (2001).

Johnson, R.

R. Johnson and H. Jasik, Antenna Engineering Handbook (McGraw-Hill, 1984), Vol. 1.

Károlyi, G.

P. Földesy, D. Gergelyi, C. Füzy, and G. Károlyi, in 2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS) (IEEE, 2012), pp. 101–104.

Kim, S.

S. Preu, S. Kim, R. Verma, P. Burke, N. Vinh, M. Sherwin, and A. Gossard, IEEE Trans. THz Sci. Technol. 2, 278 (2012).

King, B.

S. Lai, B. King, and M. Neifeld, Opt. Commun. 173, 155 (2000).
[CrossRef]

Lai, S.

S. Lai and M. Neifeld, Opt. Commun. 178, 283 (2000).
[CrossRef]

S. Lai, B. King, and M. Neifeld, Opt. Commun. 173, 155 (2000).
[CrossRef]

Li, Q.

Li, Y.-D.

Lisauskas, A.

U. Pfeiffer, E. Ojefors, A. Lisauskas, D. Glaab, F. Voltolina, V. Nzogang, P. Bolivar, and H. Roskos, in 33rd International Conference on Infrared, Millimeter and Terahertz Waves, 2008. IRMMW-THz 2008 (IEEE, 2008), pp. 1–3.
[CrossRef]

Liu, J.

Mittleman, D.

J. Johnson, T. Dorney, and D. Mittleman, Appl. Phys. Lett. 78, 835 (2001).

Neifeld, M.

S. Lai and M. Neifeld, Opt. Commun. 178, 283 (2000).
[CrossRef]

S. Lai, B. King, and M. Neifeld, Opt. Commun. 173, 155 (2000).
[CrossRef]

Nzogang, V.

U. Pfeiffer, E. Ojefors, A. Lisauskas, D. Glaab, F. Voltolina, V. Nzogang, P. Bolivar, and H. Roskos, in 33rd International Conference on Infrared, Millimeter and Terahertz Waves, 2008. IRMMW-THz 2008 (IEEE, 2008), pp. 1–3.
[CrossRef]

Ojefors, E.

U. Pfeiffer, E. Ojefors, A. Lisauskas, D. Glaab, F. Voltolina, V. Nzogang, P. Bolivar, and H. Roskos, in 33rd International Conference on Infrared, Millimeter and Terahertz Waves, 2008. IRMMW-THz 2008 (IEEE, 2008), pp. 1–3.
[CrossRef]

Pfeiffer, U.

U. Pfeiffer, E. Ojefors, A. Lisauskas, D. Glaab, F. Voltolina, V. Nzogang, P. Bolivar, and H. Roskos, in 33rd International Conference on Infrared, Millimeter and Terahertz Waves, 2008. IRMMW-THz 2008 (IEEE, 2008), pp. 1–3.
[CrossRef]

Poon, T.

Preu, S.

S. Preu, S. Kim, R. Verma, P. Burke, N. Vinh, M. Sherwin, and A. Gossard, IEEE Trans. THz Sci. Technol. 2, 278 (2012).

Roskos, H.

U. Pfeiffer, E. Ojefors, A. Lisauskas, D. Glaab, F. Voltolina, V. Nzogang, P. Bolivar, and H. Roskos, in 33rd International Conference on Infrared, Millimeter and Terahertz Waves, 2008. IRMMW-THz 2008 (IEEE, 2008), pp. 1–3.
[CrossRef]

Sherwin, M.

S. Preu, S. Kim, R. Verma, P. Burke, N. Vinh, M. Sherwin, and A. Gossard, IEEE Trans. THz Sci. Technol. 2, 278 (2012).

Sun, W.

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, Strain 44, 380 (2008).
[CrossRef]

Verma, R.

S. Preu, S. Kim, R. Verma, P. Burke, N. Vinh, M. Sherwin, and A. Gossard, IEEE Trans. THz Sci. Technol. 2, 278 (2012).

Vinh, N.

S. Preu, S. Kim, R. Verma, P. Burke, N. Vinh, M. Sherwin, and A. Gossard, IEEE Trans. THz Sci. Technol. 2, 278 (2012).

Voltolina, F.

U. Pfeiffer, E. Ojefors, A. Lisauskas, D. Glaab, F. Voltolina, V. Nzogang, P. Bolivar, and H. Roskos, in 33rd International Conference on Infrared, Millimeter and Terahertz Waves, 2008. IRMMW-THz 2008 (IEEE, 2008), pp. 1–3.
[CrossRef]

Wang, Q.

Wang, X.

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, Strain 44, 380 (2008).
[CrossRef]

Zhang, Y.

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, Strain 44, 380 (2008).
[CrossRef]

Zhou, W.

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, Strain 44, 380 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

J. Johnson, T. Dorney, and D. Mittleman, Appl. Phys. Lett. 78, 835 (2001).

IEEE Trans. THz Sci. Technol. (1)

S. Preu, S. Kim, R. Verma, P. Burke, N. Vinh, M. Sherwin, and A. Gossard, IEEE Trans. THz Sci. Technol. 2, 278 (2012).

Infrared Phys. Technol. (1)

F. González and G. Boreman, Infrared Phys. Technol. 46, 418 (2005).
[CrossRef]

Opt. Commun. (2)

S. Lai, B. King, and M. Neifeld, Opt. Commun. 173, 155 (2000).
[CrossRef]

S. Lai and M. Neifeld, Opt. Commun. 178, 283 (2000).
[CrossRef]

Opt. Lett. (2)

Strain (1)

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, Strain 44, 380 (2008).
[CrossRef]

Other (3)

R. Johnson and H. Jasik, Antenna Engineering Handbook (McGraw-Hill, 1984), Vol. 1.

P. Földesy, D. Gergelyi, C. Füzy, and G. Károlyi, in 2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS) (IEEE, 2012), pp. 101–104.

U. Pfeiffer, E. Ojefors, A. Lisauskas, D. Glaab, F. Voltolina, V. Nzogang, P. Bolivar, and H. Roskos, in 33rd International Conference on Infrared, Millimeter and Terahertz Waves, 2008. IRMMW-THz 2008 (IEEE, 2008), pp. 1–3.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) and (b) Microphotos of the two antenna coupled FET detectors (c) and the incident reference and object beam polarization employed in the experiment.

Fig. 2.
Fig. 2.

Experimental setup used to raster scan quadrature phase-shifted interferograms at 360 GHz.

Fig. 3.
Fig. 3.

Steps of the 360 GHz optical path difference (OPD) measurement: (a) photograph of the PMMA equiconvex lens illustrating the raster scanned area of 30 by 30 mm, (b) in-phase interferogram captured by the bow-tie antenna detector, (c) quadrature interferogram captured by the spiral antenna detector, (d) reconstructed phase image, (e) unwrapped phase image, and (f) pseudo-3D view of the estimated OPD.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ρ^CPa=(h^jv^)/2,ρ^DLPa=(h^±v^)/2,ρ^LPa=h^.
ρ^i=Ehh^+Evv^ejδ.
UR=η(UDSTHz)2(UGSTHz)2+2(UDSTHzUGSTHz)cos(δD)4(UDSDC+UGSDC),
UR=η(UGSTHz)24UGSDC.
UGS,CPTHz=2RAPhj2RAPvexp(jδ)2,UGS,DLPTHz=2RAPh±2RAPvexp(jδ)2,UGS,LPTHz=2RAPh.
UCPAR=ηRAPhRAPv±2RAPhPvsin(δ)2UGSDC,UDLPAR=ηRAPhRAPv±2RAPhPvcos(δ)2UGSDC,ULPAR=ηRAPh2UGSDC.
ϵeff=ϵsubstrate+12,Lplanarλ02ϵeff.

Metrics