Abstract

Resonant photon tunneling was investigated experimentally in multilayer structures containing a high-contrast (TiO2/SiO2) Bragg mirror capped with a semitransparent gold film. Transmission via a fundamental cavity resonance was compared with transmission via the Tamm plasmon polariton resonance that appears at the interface between a metal film and a one-dimensional photonic bandgap structure. The Tamm-plasmon-mediated transmission exhibits a smaller dependence on the angle and polarization of the incident light for similar values of peak transmission, resonance wavelength, and finesse. Implications for transparent electrical contacts based on resonant tunneling structures are discussed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  2. L. L. Chang, L. Esaki, and R. Tsu, Appl. Phys. Lett. 24, 593 (1974).
    [CrossRef]
  3. A. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Oxford University, 2007).
  4. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, Phys. Rev. B 76, 165415 (2007).
    [CrossRef]
  5. M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, Superlattices Microstruct. 47, 44 (2010).
    [CrossRef]
  6. H. X. Da, Z. Q. Huang, and Z. Y. Li, Opt. Lett. 34, 1693 (2009).
    [CrossRef]
  7. E. Homeyer, C. Symonds, A. Lemaitre, J. C. Plenet, and J. Bellessa, Superlattices Microstruct. 49, 224 (2011).
    [CrossRef]
  8. J. Meiss, M. K. Riede, and K. Leo, Appl. Phys. Lett. 94, 013303 (2009).
    [CrossRef]
  9. J. T. Gudmundsson, N. Brenning, D. Lundin, and U. Helmersson, J. Vac. Sci. Technol. A 30, 030801 (2012).
    [CrossRef]
  10. C. C. Katsidis and D. I. Siapkas, Appl. Opt. 41, 3978 (2002).
    [CrossRef]
  11. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  12. F. Magnus, B. Agnarsson, A. S. Ingason, K. Leosson, S. Olafsson, and J. T. Gudmundsson, in MRS Proceedings (2011), Vol. 1352.
    [CrossRef]

2012 (1)

J. T. Gudmundsson, N. Brenning, D. Lundin, and U. Helmersson, J. Vac. Sci. Technol. A 30, 030801 (2012).
[CrossRef]

2011 (1)

E. Homeyer, C. Symonds, A. Lemaitre, J. C. Plenet, and J. Bellessa, Superlattices Microstruct. 49, 224 (2011).
[CrossRef]

2010 (1)

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, Superlattices Microstruct. 47, 44 (2010).
[CrossRef]

2009 (2)

H. X. Da, Z. Q. Huang, and Z. Y. Li, Opt. Lett. 34, 1693 (2009).
[CrossRef]

J. Meiss, M. K. Riede, and K. Leo, Appl. Phys. Lett. 94, 013303 (2009).
[CrossRef]

2007 (1)

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, Phys. Rev. B 76, 165415 (2007).
[CrossRef]

2002 (1)

1974 (1)

L. L. Chang, L. Esaki, and R. Tsu, Appl. Phys. Lett. 24, 593 (1974).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Abram, R. A.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, Superlattices Microstruct. 47, 44 (2010).
[CrossRef]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, Phys. Rev. B 76, 165415 (2007).
[CrossRef]

Agnarsson, B.

F. Magnus, B. Agnarsson, A. S. Ingason, K. Leosson, S. Olafsson, and J. T. Gudmundsson, in MRS Proceedings (2011), Vol. 1352.
[CrossRef]

Baumberg, J. J.

A. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Oxford University, 2007).

Bellessa, J.

E. Homeyer, C. Symonds, A. Lemaitre, J. C. Plenet, and J. Bellessa, Superlattices Microstruct. 49, 224 (2011).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Brand, S.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, Superlattices Microstruct. 47, 44 (2010).
[CrossRef]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, Phys. Rev. B 76, 165415 (2007).
[CrossRef]

Brenning, N.

J. T. Gudmundsson, N. Brenning, D. Lundin, and U. Helmersson, J. Vac. Sci. Technol. A 30, 030801 (2012).
[CrossRef]

Chamberlain, J. M.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, Superlattices Microstruct. 47, 44 (2010).
[CrossRef]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, Phys. Rev. B 76, 165415 (2007).
[CrossRef]

Chang, L. L.

L. L. Chang, L. Esaki, and R. Tsu, Appl. Phys. Lett. 24, 593 (1974).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Da, H. X.

Egorov, A. Y.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, Superlattices Microstruct. 47, 44 (2010).
[CrossRef]

Esaki, L.

L. L. Chang, L. Esaki, and R. Tsu, Appl. Phys. Lett. 24, 593 (1974).
[CrossRef]

Gudmundsson, J. T.

J. T. Gudmundsson, N. Brenning, D. Lundin, and U. Helmersson, J. Vac. Sci. Technol. A 30, 030801 (2012).
[CrossRef]

F. Magnus, B. Agnarsson, A. S. Ingason, K. Leosson, S. Olafsson, and J. T. Gudmundsson, in MRS Proceedings (2011), Vol. 1352.
[CrossRef]

Helmersson, U.

J. T. Gudmundsson, N. Brenning, D. Lundin, and U. Helmersson, J. Vac. Sci. Technol. A 30, 030801 (2012).
[CrossRef]

Homeyer, E.

E. Homeyer, C. Symonds, A. Lemaitre, J. C. Plenet, and J. Bellessa, Superlattices Microstruct. 49, 224 (2011).
[CrossRef]

Huang, Z. Q.

Ingason, A. S.

F. Magnus, B. Agnarsson, A. S. Ingason, K. Leosson, S. Olafsson, and J. T. Gudmundsson, in MRS Proceedings (2011), Vol. 1352.
[CrossRef]

Iorsh, I.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, Phys. Rev. B 76, 165415 (2007).
[CrossRef]

Iorsh, I. V.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, Superlattices Microstruct. 47, 44 (2010).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Kaliteevski, M.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, Phys. Rev. B 76, 165415 (2007).
[CrossRef]

Kaliteevski, M. A.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, Superlattices Microstruct. 47, 44 (2010).
[CrossRef]

Katsidis, C. C.

Kavokin, A.

A. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Oxford University, 2007).

Kavokin, A. V.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, Superlattices Microstruct. 47, 44 (2010).
[CrossRef]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, Phys. Rev. B 76, 165415 (2007).
[CrossRef]

Laussy, F. P.

A. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Oxford University, 2007).

Lemaitre, A.

E. Homeyer, C. Symonds, A. Lemaitre, J. C. Plenet, and J. Bellessa, Superlattices Microstruct. 49, 224 (2011).
[CrossRef]

Leo, K.

J. Meiss, M. K. Riede, and K. Leo, Appl. Phys. Lett. 94, 013303 (2009).
[CrossRef]

Leosson, K.

F. Magnus, B. Agnarsson, A. S. Ingason, K. Leosson, S. Olafsson, and J. T. Gudmundsson, in MRS Proceedings (2011), Vol. 1352.
[CrossRef]

Li, Z. Y.

Lundin, D.

J. T. Gudmundsson, N. Brenning, D. Lundin, and U. Helmersson, J. Vac. Sci. Technol. A 30, 030801 (2012).
[CrossRef]

Magnus, F.

F. Magnus, B. Agnarsson, A. S. Ingason, K. Leosson, S. Olafsson, and J. T. Gudmundsson, in MRS Proceedings (2011), Vol. 1352.
[CrossRef]

Malpuech, G.

A. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Oxford University, 2007).

Meiss, J.

J. Meiss, M. K. Riede, and K. Leo, Appl. Phys. Lett. 94, 013303 (2009).
[CrossRef]

Mikhrin, V. S.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, Superlattices Microstruct. 47, 44 (2010).
[CrossRef]

Olafsson, S.

F. Magnus, B. Agnarsson, A. S. Ingason, K. Leosson, S. Olafsson, and J. T. Gudmundsson, in MRS Proceedings (2011), Vol. 1352.
[CrossRef]

Plenet, J. C.

E. Homeyer, C. Symonds, A. Lemaitre, J. C. Plenet, and J. Bellessa, Superlattices Microstruct. 49, 224 (2011).
[CrossRef]

Riede, M. K.

J. Meiss, M. K. Riede, and K. Leo, Appl. Phys. Lett. 94, 013303 (2009).
[CrossRef]

Sasin, M. E.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, Superlattices Microstruct. 47, 44 (2010).
[CrossRef]

Seisyan, R. P.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, Superlattices Microstruct. 47, 44 (2010).
[CrossRef]

Shelykh, I. A.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, Superlattices Microstruct. 47, 44 (2010).
[CrossRef]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, Phys. Rev. B 76, 165415 (2007).
[CrossRef]

Siapkas, D. I.

Symonds, C.

E. Homeyer, C. Symonds, A. Lemaitre, J. C. Plenet, and J. Bellessa, Superlattices Microstruct. 49, 224 (2011).
[CrossRef]

Tsu, R.

L. L. Chang, L. Esaki, and R. Tsu, Appl. Phys. Lett. 24, 593 (1974).
[CrossRef]

Vasil’ev, A. P.

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, Superlattices Microstruct. 47, 44 (2010).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

L. L. Chang, L. Esaki, and R. Tsu, Appl. Phys. Lett. 24, 593 (1974).
[CrossRef]

J. Meiss, M. K. Riede, and K. Leo, Appl. Phys. Lett. 94, 013303 (2009).
[CrossRef]

J. Vac. Sci. Technol. A (1)

J. T. Gudmundsson, N. Brenning, D. Lundin, and U. Helmersson, J. Vac. Sci. Technol. A 30, 030801 (2012).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (2)

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, Phys. Rev. B 76, 165415 (2007).
[CrossRef]

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Superlattices Microstruct. (2)

M. E. Sasin, R. P. Seisyan, M. A. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, I. V. Iorsh, I. A. Shelykh, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, Superlattices Microstruct. 47, 44 (2010).
[CrossRef]

E. Homeyer, C. Symonds, A. Lemaitre, J. C. Plenet, and J. Bellessa, Superlattices Microstruct. 49, 224 (2011).
[CrossRef]

Other (3)

A. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Oxford University, 2007).

F. Magnus, B. Agnarsson, A. S. Ingason, K. Leosson, S. Olafsson, and J. T. Gudmundsson, in MRS Proceedings (2011), Vol. 1352.
[CrossRef]

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Electric (solid curves) and magnetic (dashed curves) field amplitudes in the cavity geometry (top) and the Tamm plasmon polariton geometry (bottom), for light at the resonance wavelength (950 nm) incident from the left. Light blue and dark blue shading indicates low-index (SiO2 or PMMA) and high-index (TiO2) dielectric layers, respectively. Thin orange layers represent gold.

Fig. 2.
Fig. 2.

Calculated (top) and measured (bottom) transmission curves for the two-period Bragg mirror alone (dashed curves), cavity structure (left panels), or TPP structure (right panels) before and after application of the metal layer (cf. Fig. 1). Both structures were designed to give resonant transmission at around 950 nm wavelength (at the center of the stop band of the Bragg mirror). All curves include an incoherent backside reflection of about 4%.

Fig. 3
Fig. 3

Calculated (solid curves) and experimental (symbols) values for spectral position, spectral width, and optical transmission at resonance at normal incidence. The dashed curves show the value of optical transmission expected through a correspondingly thick smooth gold film deposited directly on glass.

Fig. 4.
Fig. 4.

Angular shift in peak resonant transmission wavelength for unpolarized light for the cavity mode structure (solid squares) and the Tamm plasmon polariton structure (open circles). Solid and dashed curves show corresponding transfer-matrix calculations for TM and TE polarized light, respectively.

Metrics