Abstract

A sensitive and selective optical technique to detect potassium chloride (KCl) vapor is introduced. The technique is based on the photofragmentation of KCl molecules, using a pulsed UV laser, and optical probing of the temporarily increased amount of potassium atoms with a near-infrared laser. The two laser beams are aligned to go through the sample volume along the same optical path. The performance of the technique is demonstrated by detecting KCl concentrations from 25 ppb to 30 ppm in a temperature-controlled cell.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Nielsen, F. Frandsen, K. Dam-Johansen, and L. Baxter, Progr. Energy Combust. Sci. 26, 283 (2000).
    [CrossRef]
  2. P. Monkhouse, Progr. Energy Combust. Sci. 37, 125 (2011).
    [CrossRef]
  3. P. Davidovits and D. C. Brodhead, J. Chem. Phys. 46, 2968 (1967).
    [CrossRef]
  4. R. Oldenborg and S. Baughcum, Anal. Chem. 58, 1430 (1986).
    [CrossRef]
  5. C. Forsberg, M. Broström, R. Backman, E. Edvardsson, S. Badiei, M. Berg, and H. Kassman, Rev. Sci. Instrum. 80, 023104 (2009).
    [CrossRef]
  6. S. Edelstein and P. Davidovits, J. Chem. Phys. 55, 5164 (1971).
    [CrossRef]
  7. D. Ehrlich and R. Osgood, IEEE J. Quantum Electron. 16, 257 (1980).
    [CrossRef]
  8. T. Sorvajärvi, A. Manninen, J. Toivonen, J. Saarela, and R. Hernberg, Rev. Sci. Instrum. 80, 123103 (2009).
    [CrossRef]

2011 (1)

P. Monkhouse, Progr. Energy Combust. Sci. 37, 125 (2011).
[CrossRef]

2009 (2)

C. Forsberg, M. Broström, R. Backman, E. Edvardsson, S. Badiei, M. Berg, and H. Kassman, Rev. Sci. Instrum. 80, 023104 (2009).
[CrossRef]

T. Sorvajärvi, A. Manninen, J. Toivonen, J. Saarela, and R. Hernberg, Rev. Sci. Instrum. 80, 123103 (2009).
[CrossRef]

2000 (1)

H. Nielsen, F. Frandsen, K. Dam-Johansen, and L. Baxter, Progr. Energy Combust. Sci. 26, 283 (2000).
[CrossRef]

1986 (1)

R. Oldenborg and S. Baughcum, Anal. Chem. 58, 1430 (1986).
[CrossRef]

1980 (1)

D. Ehrlich and R. Osgood, IEEE J. Quantum Electron. 16, 257 (1980).
[CrossRef]

1971 (1)

S. Edelstein and P. Davidovits, J. Chem. Phys. 55, 5164 (1971).
[CrossRef]

1967 (1)

P. Davidovits and D. C. Brodhead, J. Chem. Phys. 46, 2968 (1967).
[CrossRef]

Backman, R.

C. Forsberg, M. Broström, R. Backman, E. Edvardsson, S. Badiei, M. Berg, and H. Kassman, Rev. Sci. Instrum. 80, 023104 (2009).
[CrossRef]

Badiei, S.

C. Forsberg, M. Broström, R. Backman, E. Edvardsson, S. Badiei, M. Berg, and H. Kassman, Rev. Sci. Instrum. 80, 023104 (2009).
[CrossRef]

Baughcum, S.

R. Oldenborg and S. Baughcum, Anal. Chem. 58, 1430 (1986).
[CrossRef]

Baxter, L.

H. Nielsen, F. Frandsen, K. Dam-Johansen, and L. Baxter, Progr. Energy Combust. Sci. 26, 283 (2000).
[CrossRef]

Berg, M.

C. Forsberg, M. Broström, R. Backman, E. Edvardsson, S. Badiei, M. Berg, and H. Kassman, Rev. Sci. Instrum. 80, 023104 (2009).
[CrossRef]

Brodhead, D. C.

P. Davidovits and D. C. Brodhead, J. Chem. Phys. 46, 2968 (1967).
[CrossRef]

Broström, M.

C. Forsberg, M. Broström, R. Backman, E. Edvardsson, S. Badiei, M. Berg, and H. Kassman, Rev. Sci. Instrum. 80, 023104 (2009).
[CrossRef]

Dam-Johansen, K.

H. Nielsen, F. Frandsen, K. Dam-Johansen, and L. Baxter, Progr. Energy Combust. Sci. 26, 283 (2000).
[CrossRef]

Davidovits, P.

S. Edelstein and P. Davidovits, J. Chem. Phys. 55, 5164 (1971).
[CrossRef]

P. Davidovits and D. C. Brodhead, J. Chem. Phys. 46, 2968 (1967).
[CrossRef]

Edelstein, S.

S. Edelstein and P. Davidovits, J. Chem. Phys. 55, 5164 (1971).
[CrossRef]

Edvardsson, E.

C. Forsberg, M. Broström, R. Backman, E. Edvardsson, S. Badiei, M. Berg, and H. Kassman, Rev. Sci. Instrum. 80, 023104 (2009).
[CrossRef]

Ehrlich, D.

D. Ehrlich and R. Osgood, IEEE J. Quantum Electron. 16, 257 (1980).
[CrossRef]

Forsberg, C.

C. Forsberg, M. Broström, R. Backman, E. Edvardsson, S. Badiei, M. Berg, and H. Kassman, Rev. Sci. Instrum. 80, 023104 (2009).
[CrossRef]

Frandsen, F.

H. Nielsen, F. Frandsen, K. Dam-Johansen, and L. Baxter, Progr. Energy Combust. Sci. 26, 283 (2000).
[CrossRef]

Hernberg, R.

T. Sorvajärvi, A. Manninen, J. Toivonen, J. Saarela, and R. Hernberg, Rev. Sci. Instrum. 80, 123103 (2009).
[CrossRef]

Kassman, H.

C. Forsberg, M. Broström, R. Backman, E. Edvardsson, S. Badiei, M. Berg, and H. Kassman, Rev. Sci. Instrum. 80, 023104 (2009).
[CrossRef]

Manninen, A.

T. Sorvajärvi, A. Manninen, J. Toivonen, J. Saarela, and R. Hernberg, Rev. Sci. Instrum. 80, 123103 (2009).
[CrossRef]

Monkhouse, P.

P. Monkhouse, Progr. Energy Combust. Sci. 37, 125 (2011).
[CrossRef]

Nielsen, H.

H. Nielsen, F. Frandsen, K. Dam-Johansen, and L. Baxter, Progr. Energy Combust. Sci. 26, 283 (2000).
[CrossRef]

Oldenborg, R.

R. Oldenborg and S. Baughcum, Anal. Chem. 58, 1430 (1986).
[CrossRef]

Osgood, R.

D. Ehrlich and R. Osgood, IEEE J. Quantum Electron. 16, 257 (1980).
[CrossRef]

Saarela, J.

T. Sorvajärvi, A. Manninen, J. Toivonen, J. Saarela, and R. Hernberg, Rev. Sci. Instrum. 80, 123103 (2009).
[CrossRef]

Sorvajärvi, T.

T. Sorvajärvi, A. Manninen, J. Toivonen, J. Saarela, and R. Hernberg, Rev. Sci. Instrum. 80, 123103 (2009).
[CrossRef]

Toivonen, J.

T. Sorvajärvi, A. Manninen, J. Toivonen, J. Saarela, and R. Hernberg, Rev. Sci. Instrum. 80, 123103 (2009).
[CrossRef]

Anal. Chem. (1)

R. Oldenborg and S. Baughcum, Anal. Chem. 58, 1430 (1986).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Ehrlich and R. Osgood, IEEE J. Quantum Electron. 16, 257 (1980).
[CrossRef]

J. Chem. Phys. (2)

P. Davidovits and D. C. Brodhead, J. Chem. Phys. 46, 2968 (1967).
[CrossRef]

S. Edelstein and P. Davidovits, J. Chem. Phys. 55, 5164 (1971).
[CrossRef]

Progr. Energy Combust. Sci. (2)

H. Nielsen, F. Frandsen, K. Dam-Johansen, and L. Baxter, Progr. Energy Combust. Sci. 26, 283 (2000).
[CrossRef]

P. Monkhouse, Progr. Energy Combust. Sci. 37, 125 (2011).
[CrossRef]

Rev. Sci. Instrum. (2)

C. Forsberg, M. Broström, R. Backman, E. Edvardsson, S. Badiei, M. Berg, and H. Kassman, Rev. Sci. Instrum. 80, 023104 (2009).
[CrossRef]

T. Sorvajärvi, A. Manninen, J. Toivonen, J. Saarela, and R. Hernberg, Rev. Sci. Instrum. 80, 123103 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup for real-time detection of vaporous potassium chloride: ultraviolet laser, UV; probe laser, DFB; mirror, M; aperture, AP; beam splitter, BS; dichroic mirror, DM; energy meter, EM; lens, L; detector, D; amplifier, A; oscilloscope, O.

Fig. 2.
Fig. 2.

Two transmission curves of the probe laser with different probe wavelength through sample vapor having KCl concentration of 2 ppm. The UV excitation takes place at t=0.

Fig. 3.
Fig. 3.

Normalized maximum absorbance of the probe laser right after the UV excitation with respect to its wavelength around 766.5132 nm. The FWHM of the peak was measured to be 15.7 pm.

Fig. 4.
Fig. 4.

Maximum absorbance of probe laser beam as a function of KCl concentration. 3σ detection limit was determined to be 4 ppb with 170 mm sample length.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I(t)={I0t<0I0exp(αLmaxe(t/τ))t0,

Metrics