Abstract

We propose a single-shot phase unwrapping technique using a single wavelength. In the proposed technique, an object is illuminated by two laser beams, which are emitted from the same laser, whose illumination angles and polarizations are different. Then two types of the object waves generated by the two beams are separately and simultaneously recorded by a polarization imaging camera. We conducted an experiment and a 2.5 mm height object, which was 9400 times height of the wavelength of the laser, was reconstructed without wrapping.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Ichioka and M. Inuiya, Appl. Opt. 11, 1507 (1972).
    [CrossRef]
  2. J. W. Goodman and R. W. Lawrence, Appl. Phys. Lett. 11, 77 (1967).
    [CrossRef]
  3. E. Cuche, F. Bevilacqua, and C. Depeursinge, Opt. Lett. 24, 291 (1999).
    [CrossRef]
  4. P. Ferraro, D. Alfieri, S. Nicola, L. Petrocellis, A. Finizio, and G. Pierattini, Opt. Lett. 31, 1405 (2006).
    [CrossRef]
  5. E. Tajahuerce, O. Matoba, and B. Javidi, Appl. Opt. 40, 3877 (2001).
    [CrossRef]
  6. S. Murata and N. Yasuda, Opt. Laser Technol. 32, 567 (2000).
    [CrossRef]
  7. K. Itoh, Appl. Opt. 21, 2470 (1982).
    [CrossRef]
  8. M. Takeda, Q. Gu, M. Kinoshita, H. Takaki, and Y. Takahashi, Appl. Opt. 36, 5347 (1997).
    [CrossRef]
  9. V. V. Volkov and Y. Zhu, Opt. Lett. 28, 2156 (2003).
    [CrossRef]
  10. J. Gass, A. Dakoff, and M. K. Kim, Opt. Lett. 28, 1141 (2003).
    [CrossRef]
  11. I. Yamaguchi, J. Kato, and S. Ohta, Opt. Rev. 8, 85 (2001).
    [CrossRef]
  12. M. Takeda, H. Ina, and S. Kobayashi, J. Opt. Soc. Am. 72, 156 (1982).
    [CrossRef]
  13. M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), p. 357.
  14. Y. Awatsuji, M. Sasada, and T. Kubota, Appl. Phys. Lett. 85, 1069 (2004).
    [CrossRef]
  15. Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, Appl. Opt. 47, D183 (2008).
    [CrossRef]
  16. Ll. Martínez-León, M. Araiza-E, B. Javidi, P. Andrés, V. Climent, J. Lancis, and E. Tajahuerce, Opt. Express 17, 12900 (2009).
    [CrossRef]
  17. T. Tahara, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, Opt. Lett. 37, 148 (2012).
    [CrossRef]
  18. T. Tahara, K. Ito, M. Fujii, T. Kakue, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, Opt. Express 18, 18975 (2010).
    [CrossRef]
  19. T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, Opt. Rev. 17, 519 (2010).
    [CrossRef]

2012

2010

2009

2008

2006

2004

Y. Awatsuji, M. Sasada, and T. Kubota, Appl. Phys. Lett. 85, 1069 (2004).
[CrossRef]

2003

2001

I. Yamaguchi, J. Kato, and S. Ohta, Opt. Rev. 8, 85 (2001).
[CrossRef]

E. Tajahuerce, O. Matoba, and B. Javidi, Appl. Opt. 40, 3877 (2001).
[CrossRef]

2000

S. Murata and N. Yasuda, Opt. Laser Technol. 32, 567 (2000).
[CrossRef]

1999

1997

1982

1972

1967

J. W. Goodman and R. W. Lawrence, Appl. Phys. Lett. 11, 77 (1967).
[CrossRef]

Alfieri, D.

Andrés, P.

Araiza-E, M.

Awatsuji, Y.

T. Tahara, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, Opt. Lett. 37, 148 (2012).
[CrossRef]

T. Tahara, K. Ito, M. Fujii, T. Kakue, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, Opt. Express 18, 18975 (2010).
[CrossRef]

T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, Opt. Rev. 17, 519 (2010).
[CrossRef]

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, Appl. Opt. 47, D183 (2008).
[CrossRef]

Y. Awatsuji, M. Sasada, and T. Kubota, Appl. Phys. Lett. 85, 1069 (2004).
[CrossRef]

M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), p. 357.

Bevilacqua, F.

Climent, V.

Cuche, E.

Dakoff, A.

Depeursinge, C.

Ferraro, P.

Finizio, A.

Fujii, A.

M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), p. 357.

Fujii, M.

Gass, J.

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, Appl. Phys. Lett. 11, 77 (1967).
[CrossRef]

Gu, Q.

Ichioka, Y.

Ina, H.

Inuiya, M.

Ito, K.

Itoh, K.

Javidi, B.

Kakue, T.

Kaneko, A.

Kato, J.

I. Yamaguchi, J. Kato, and S. Ohta, Opt. Rev. 8, 85 (2001).
[CrossRef]

Kim, M. K.

Kinoshita, M.

Kobayashi, S.

Koyama, T.

Kubota, T.

T. Tahara, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, Opt. Lett. 37, 148 (2012).
[CrossRef]

T. Tahara, K. Ito, M. Fujii, T. Kakue, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, Opt. Express 18, 18975 (2010).
[CrossRef]

T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, Opt. Rev. 17, 519 (2010).
[CrossRef]

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, Appl. Opt. 47, D183 (2008).
[CrossRef]

Y. Awatsuji, M. Sasada, and T. Kubota, Appl. Phys. Lett. 85, 1069 (2004).
[CrossRef]

M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), p. 357.

Lancis, J.

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, Appl. Phys. Lett. 11, 77 (1967).
[CrossRef]

Martínez-León, Ll.

Matoba, O.

Murata, S.

S. Murata and N. Yasuda, Opt. Laser Technol. 32, 567 (2000).
[CrossRef]

Nicola, S.

Nishio, K.

Ohta, S.

I. Yamaguchi, J. Kato, and S. Ohta, Opt. Rev. 8, 85 (2001).
[CrossRef]

Petrocellis, L.

Pierattini, G.

Sasada, M.

Y. Awatsuji, M. Sasada, and T. Kubota, Appl. Phys. Lett. 85, 1069 (2004).
[CrossRef]

M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), p. 357.

Shimozato, Y.

Tahara, T.

Tajahuerce, E.

Takahashi, Y.

Takaki, H.

Takeda, M.

Ura, S.

Volkov, V. V.

Yamaguchi, I.

I. Yamaguchi, J. Kato, and S. Ohta, Opt. Rev. 8, 85 (2001).
[CrossRef]

Yasuda, N.

S. Murata and N. Yasuda, Opt. Laser Technol. 32, 567 (2000).
[CrossRef]

Zhu, Y.

Appl. Opt.

Appl. Phys. Lett.

J. W. Goodman and R. W. Lawrence, Appl. Phys. Lett. 11, 77 (1967).
[CrossRef]

Y. Awatsuji, M. Sasada, and T. Kubota, Appl. Phys. Lett. 85, 1069 (2004).
[CrossRef]

J. Opt. Soc. Am.

Opt. Express

Opt. Laser Technol.

S. Murata and N. Yasuda, Opt. Laser Technol. 32, 567 (2000).
[CrossRef]

Opt. Lett.

Opt. Rev.

I. Yamaguchi, J. Kato, and S. Ohta, Opt. Rev. 8, 85 (2001).
[CrossRef]

T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, Opt. Rev. 17, 519 (2010).
[CrossRef]

Other

M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), p. 357.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the proposed technique.

Fig. 2.
Fig. 2.

Scheme of the implementation of the proposed technique.

Fig. 3.
Fig. 3.

Image-reconstruction algorithm when Fourier transform technique is adopted.

Fig. 4.
Fig. 4.

(a) Optical setup and (b) object used for an experiment.

Fig. 5.
Fig. 5.

Experimental result. (a) Amplitude distribution and phase distributions of (b) a polarization and (c) the other polarization directions, respectively. (d) Unwrapped image calculated from (b) and (c). (e) Plot of the height distribution corresponding to the cross section along the line AB drawn in (d). (f) 3D rendering of (d).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

arg{U1(x,y)}=(2π/λ){xsinθ+h(x,y)cosθ},
arg{U2(x,y)}=(2π/λ){xsin(θ+Δθ)+h(x,y)cos(θ+Δθ)},
h(x,y)=λ[arg{U1(x,y)}arg{U2(x,y)}]4πsin(Δθ/2)sin(θ+Δθ/2),
Δh(x,y)=λ2sin(Δθ/2)sin(θ+Δθ/2).

Metrics