Abstract

Strong waveguide Bragg gratings (10.5 dB transmission dip) were fabricated using the femtosecond (fs) laser direct-write technique in ZBLAN glass. The Bragg gratings are based on depressed cladding waveguides and consist of planes, periodic according to the Bragg condition, which are constructed from a transverse hexagonal lattice of smaller point features. Such gratings are a key step toward the realization of mid-infrared monolithic waveguide lasers using the fs laser direct-write technique.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, Opt. Lett. 36, 1587 (2011).
    [CrossRef]
  2. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, A. Fuerbach, M. J. Withford, and T. M. Monro, Opt. Lett. 37, 996 (2012).
    [CrossRef]
  3. G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, Opt. Lett. 33, 956 (2008).
    [CrossRef]
  4. T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
    [CrossRef]
  5. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, Electron. Lett. 40, 1170 (2004).
    [CrossRef]
  6. G. Brown, R. R. Thomson, A. K. Kar, N. D. Psaila, and H. T. Bookey, Opt. Lett. 37, 491 (2012).
    [CrossRef]
  7. C. Schaffer, J. García, and E. Mazur, Appl. Phys. A 76, 351 (2003).
    [CrossRef]
  8. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, J. M. Dawes, and M. J. Withford, Opt. Express 16, 20029 (2008).
    [CrossRef]
  9. M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, Opt. Lett. 32, 454 (2007).
    [CrossRef]
  10. A. G. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, Opt. Express 20, 3832 (2012).
    [CrossRef]
  11. J. M. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg, Opt. Express 13, 4180 (2005).
    [CrossRef]
  12. J. U. Thomas, C. Voigtlander, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, Proc. SPIE 7589, 75890J (2010).
    [CrossRef]

2012 (3)

2011 (1)

2010 (1)

J. U. Thomas, C. Voigtlander, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, Proc. SPIE 7589, 75890J (2010).
[CrossRef]

2008 (2)

2007 (1)

2005 (1)

2004 (1)

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, Electron. Lett. 40, 1170 (2004).
[CrossRef]

2003 (1)

C. Schaffer, J. García, and E. Mazur, Appl. Phys. A 76, 351 (2003).
[CrossRef]

1997 (1)

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

Ams, M.

Androz, G.

Bennion, I.

A. G. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, Opt. Express 20, 3832 (2012).
[CrossRef]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, Electron. Lett. 40, 1170 (2004).
[CrossRef]

Bernier, M.

Bookey, H. T.

Brown, G.

Castro, J. M.

Chin, S. L.

Dawes, J. M.

Dekker, P.

Dubov, M.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, Electron. Lett. 40, 1170 (2004).
[CrossRef]

Ebendorff-Heidepriem, H.

Erdogan, T.

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

Faucher, D.

Fuerbach, A.

García, J.

C. Schaffer, J. García, and E. Mazur, Appl. Phys. A 76, 351 (2003).
[CrossRef]

Geraghty, D. F.

Greiner, C. M.

Gross, S.

Honkanen, S.

Iazikov, D.

Jovanovic, N.

J. U. Thomas, C. Voigtlander, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, Proc. SPIE 7589, 75890J (2010).
[CrossRef]

Kar, A. K.

Khrushchev, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, Electron. Lett. 40, 1170 (2004).
[CrossRef]

Kuan, K.

Lancaster, D. G.

Little, D. J.

Marshall, G. D.

Martinez, A.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, Electron. Lett. 40, 1170 (2004).
[CrossRef]

Mazur, E.

C. Schaffer, J. García, and E. Mazur, Appl. Phys. A 76, 351 (2003).
[CrossRef]

Mezentsev, V.

Monro, T. M.

Mossberg, T. W.

Nolte, S.

J. U. Thomas, C. Voigtlander, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, Proc. SPIE 7589, 75890J (2010).
[CrossRef]

Okhrimchuk, A. G.

Piper, J. A.

Psaila, N. D.

Saliminia, A.

Schaffer, C.

C. Schaffer, J. García, and E. Mazur, Appl. Phys. A 76, 351 (2003).
[CrossRef]

Sheng, Y.

Shestakov, A.

Steel, M.

J. U. Thomas, C. Voigtlander, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, Proc. SPIE 7589, 75890J (2010).
[CrossRef]

Thomas, J. U.

J. U. Thomas, C. Voigtlander, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, Proc. SPIE 7589, 75890J (2010).
[CrossRef]

Thomson, R. R.

Tünnermann, A.

J. U. Thomas, C. Voigtlander, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, Proc. SPIE 7589, 75890J (2010).
[CrossRef]

Vallée, R.

Voigtlander, C.

J. U. Thomas, C. Voigtlander, S. Nolte, A. Tünnermann, N. Jovanovic, G. D. Marshall, M. J. Withford, and M. Steel, Proc. SPIE 7589, 75890J (2010).
[CrossRef]

Withford, M. J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

End on, brightfield microscope image of the WBG revealing the hexagonal lattice of point features within the core of the waveguide. The inset shows a three-dimensional rendering of the structure (not to scale).

Fig. 2.
Fig. 2.

Top-down differential interference contrast image of the WBG with line profiles of the grating at three different positions showing the grating phase relation across the core. A reduction of grating contrast is apparent in close proximity to the cladding (top profile).

Fig. 3.
Fig. 3.

Transmission and reflection spectrum of a 5.8 mm long DCWBG showing a 10.5 dB transmission dip and a 230 pm (3 dB) wide reflection peak with a coupling constant κL=1.88.

Fig. 4.
Fig. 4.

(a) Example of a refractive index profile with 1.5 μm pitch grating (0.19 core fill factor) used for modeling. (b) Corresponding guided mode intensity profile. (c) Coupling constant κ, grating reflectivity, CL and MFDs of the guided mode versus the fill factor. The solid lines are a guide for the eye only.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

κAC=4πλc2ΔnACEE*dxdyEE*dxdy,

Metrics