Abstract

High-repetition-rate optical frequency combs can act as broadband photonic mixers and downconvert a microwave signal to an intermediate frequency (IF) band so that it becomes accessible with high-speed electronics. In this Letter, we show that with line-by-line pulse shaping and dispersive propagation, the photonic mixer can simultaneously perform programmable multitap complex-coefficient-filtering within the IF band. This solution opens new possibilities for microwave signal processing by combining the flexibility of optoelectronic frequency comb technology with high-speed analog-to-digital converters.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany, B. Ortega, and D. Pastor, J. Lightwave Technol. 24, 201 (2006).
    [CrossRef]
  2. J. Capmany and D. Novak, Nat. Photon. 1, 319 (2007).
    [CrossRef]
  3. H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, IEEE J. Sel. Top. Quantum Electron. 6, 1325 (2000).
    [CrossRef]
  4. E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microwave Theor. Tech. 58, 3269 (2010).
    [CrossRef]
  5. V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, Nat. Photon. 6, 186 (2012).
    [CrossRef]
  6. M. H. Song, V. Torres-Company, A. J. Metcalf, and A. M. Weiner, Opt. Lett. 37, 845 (2012).
    [CrossRef]
  7. G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulner, IEEE Trans. Microwave Theor. Tech. 41, 2383 (1993).
    [CrossRef]
  8. V. R. Pagan, B. M. Haas, and T. E. Murphy, Opt. Express 19, 883 (2011).
    [CrossRef]
  9. A. K. M. Lam, M. Fairburn, and A. F. Jaefer, IEEE Trans. Microwave Theor. Tech. 54, 240 (2006).
    [CrossRef]
  10. K.-Y. Tu, M. S. Rasras, D. M. Gill, S. S. Patel, Y.-K. Chen, A. E. White, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, J. Lightwave Technol. 28, 3019 (2010).
    [CrossRef]
  11. P. W. Juodawlkis, J. J. Hargreaves, R. D. Younger, G. W. Titi, and J. C. Twichell, J. Lightwave Technol. 21, 3116 (2003).
    [CrossRef]
  12. Y. Zhao, X. Pang, L. Deng, X. Yu, X. Zheng, and I. T. Monroy, IEEE Photon. Technol. Lett. 24, 16 (2012).
    [CrossRef]
  13. S. Xiao, L. Hollberg, N. R. Newbury, and S. A. Diddams, Opt. Express 16, 8498 (2008).
    [CrossRef]

2012

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, Nat. Photon. 6, 186 (2012).
[CrossRef]

M. H. Song, V. Torres-Company, A. J. Metcalf, and A. M. Weiner, Opt. Lett. 37, 845 (2012).
[CrossRef]

Y. Zhao, X. Pang, L. Deng, X. Yu, X. Zheng, and I. T. Monroy, IEEE Photon. Technol. Lett. 24, 16 (2012).
[CrossRef]

2011

2010

2008

2007

J. Capmany and D. Novak, Nat. Photon. 1, 319 (2007).
[CrossRef]

2006

J. Capmany, B. Ortega, and D. Pastor, J. Lightwave Technol. 24, 201 (2006).
[CrossRef]

A. K. M. Lam, M. Fairburn, and A. F. Jaefer, IEEE Trans. Microwave Theor. Tech. 54, 240 (2006).
[CrossRef]

2003

2000

H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, IEEE J. Sel. Top. Quantum Electron. 6, 1325 (2000).
[CrossRef]

1993

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulner, IEEE Trans. Microwave Theor. Tech. 41, 2383 (1993).
[CrossRef]

Beals, M.

Beattie, J.

Bulner, C. H.

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulner, IEEE Trans. Microwave Theor. Tech. 41, 2383 (1993).
[CrossRef]

Burns, W. K.

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulner, IEEE Trans. Microwave Theor. Tech. 41, 2383 (1993).
[CrossRef]

Capmany, J.

Carothers, D.

Chen, Y.-K.

Deng, L.

Y. Zhao, X. Pang, L. Deng, X. Yu, X. Zheng, and I. T. Monroy, IEEE Photon. Technol. Lett. 24, 16 (2012).
[CrossRef]

Diddams, S. A.

Fairburn, M.

A. K. M. Lam, M. Fairburn, and A. F. Jaefer, IEEE Trans. Microwave Theor. Tech. 54, 240 (2006).
[CrossRef]

Ferdous, F.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, Nat. Photon. 6, 186 (2012).
[CrossRef]

Gill, D. M.

Gopalakrishnan, G. K.

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulner, IEEE Trans. Microwave Theor. Tech. 41, 2383 (1993).
[CrossRef]

Haas, B. M.

Hamidi, E.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, Nat. Photon. 6, 186 (2012).
[CrossRef]

E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microwave Theor. Tech. 58, 3269 (2010).
[CrossRef]

Hargreaves, J. J.

Hollberg, L.

Jaefer, A. F.

A. K. M. Lam, M. Fairburn, and A. F. Jaefer, IEEE Trans. Microwave Theor. Tech. 54, 240 (2006).
[CrossRef]

Juodawlkis, P. W.

Kimerling, L. C.

Kobayashi, T.

H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, IEEE J. Sel. Top. Quantum Electron. 6, 1325 (2000).
[CrossRef]

Lam, A. K. M.

A. K. M. Lam, M. Fairburn, and A. F. Jaefer, IEEE Trans. Microwave Theor. Tech. 54, 240 (2006).
[CrossRef]

Leaird, D. E.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, Nat. Photon. 6, 186 (2012).
[CrossRef]

E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microwave Theor. Tech. 58, 3269 (2010).
[CrossRef]

Long, C. M.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, Nat. Photon. 6, 186 (2012).
[CrossRef]

Metcalf, A. J.

Michel, J.

Monroy, I. T.

Y. Zhao, X. Pang, L. Deng, X. Yu, X. Zheng, and I. T. Monroy, IEEE Photon. Technol. Lett. 24, 16 (2012).
[CrossRef]

Morimoto, A.

H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, IEEE J. Sel. Top. Quantum Electron. 6, 1325 (2000).
[CrossRef]

Murata, H.

H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, IEEE J. Sel. Top. Quantum Electron. 6, 1325 (2000).
[CrossRef]

Murphy, T. E.

Newbury, N. R.

Novak, D.

J. Capmany and D. Novak, Nat. Photon. 1, 319 (2007).
[CrossRef]

Ortega, B.

Pagan, V. R.

Pang, X.

Y. Zhao, X. Pang, L. Deng, X. Yu, X. Zheng, and I. T. Monroy, IEEE Photon. Technol. Lett. 24, 16 (2012).
[CrossRef]

Pastor, D.

Patel, S. S.

Pomerene, A.

Rasras, M. S.

Song, M. H.

Supradeepa, V. R.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, Nat. Photon. 6, 186 (2012).
[CrossRef]

Titi, G. W.

Torres-Company, V.

Tu, K.-Y.

Twichell, J. C.

Weiner, A. M.

M. H. Song, V. Torres-Company, A. J. Metcalf, and A. M. Weiner, Opt. Lett. 37, 845 (2012).
[CrossRef]

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, Nat. Photon. 6, 186 (2012).
[CrossRef]

E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microwave Theor. Tech. 58, 3269 (2010).
[CrossRef]

White, A. E.

Wu, R.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, Nat. Photon. 6, 186 (2012).
[CrossRef]

Xiao, S.

Yamamoto, S.

H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, IEEE J. Sel. Top. Quantum Electron. 6, 1325 (2000).
[CrossRef]

Younger, R. D.

Yu, X.

Y. Zhao, X. Pang, L. Deng, X. Yu, X. Zheng, and I. T. Monroy, IEEE Photon. Technol. Lett. 24, 16 (2012).
[CrossRef]

Zhao, Y.

Y. Zhao, X. Pang, L. Deng, X. Yu, X. Zheng, and I. T. Monroy, IEEE Photon. Technol. Lett. 24, 16 (2012).
[CrossRef]

Zheng, X.

Y. Zhao, X. Pang, L. Deng, X. Yu, X. Zheng, and I. T. Monroy, IEEE Photon. Technol. Lett. 24, 16 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, IEEE J. Sel. Top. Quantum Electron. 6, 1325 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Zhao, X. Pang, L. Deng, X. Yu, X. Zheng, and I. T. Monroy, IEEE Photon. Technol. Lett. 24, 16 (2012).
[CrossRef]

IEEE Trans. Microwave Theor. Tech.

A. K. M. Lam, M. Fairburn, and A. F. Jaefer, IEEE Trans. Microwave Theor. Tech. 54, 240 (2006).
[CrossRef]

E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microwave Theor. Tech. 58, 3269 (2010).
[CrossRef]

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulner, IEEE Trans. Microwave Theor. Tech. 41, 2383 (1993).
[CrossRef]

J. Lightwave Technol.

Nat. Photon.

J. Capmany and D. Novak, Nat. Photon. 1, 319 (2007).
[CrossRef]

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, Nat. Photon. 6, 186 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Setup to perform downconversion and complex-coefficient filtering. (b) The input microwave signal must lie in one of the shadowed regions.

Fig. 2.
Fig. 2.

Microwave downconversion using an optical frequency comb. (a) RF spectrum measured at point (B) in Fig. 1 (1 MHz RBW) considering an 11 GHz microwave signal as input to the SSB modulator. (b) Measured IF when the input signal is swept from 5–10 GHz. Characteristics of another broadband signal to be downconverted: (c) temporal domain and (d) frequency domain. (e) Single-shot trace of the downconverted signal from (c), and (f) RF spectrum.

Fig. 3.
Fig. 3.

(a) Unapodized optical frequency comb. (b) Resulting IF normalized power distribution (circles) and expected (solid curve). (c) Apodized frequency comb (solid curve) and target envelope (dashed line). (d) Resulting IF normalized power distribution (green circles) and expected (orange circles). When dispersion is introduced before the SSB modulator, the IF filter response can be tuned (open circles).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

H(Δf)=Hmod(Δf)mAmexp(im2πΔfτ),
Am=EL+m*Em.

Metrics