Abstract

The excitation and separation of individual modes in a few-mode optical fiber network can be realized using mode-selective couplers. For excitation at the beginning of the fiber, two-core mode-selective couplers can be used, while at the end of the fiber, either two- or three-core mode-selective couplers are required for demultiplexing of the field symmetric or field asymmetric modes, respectively. Both analytical and numerical solutions are presented to quantify the mode-selective functionality.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Riesen, J. D. Love, and J. W. Arkwright, IEEE Photon. Technol. Lett. 24, 344 (2012).
    [CrossRef]
  2. N. Riesen and J. D. Love, IEEE J. Quantum Electron. 48, 941 (2012).
    [CrossRef]
  3. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983), pp. 542–546.
  4. N. Riesen, and J. D. Love, Opt. Quantum Electron. 42, 577(2011).
    [CrossRef]
  5. W. V. Sorin, B. Y. Kim, and H. J. Shaw, Opt. Lett. 11, 581 (1986).
    [CrossRef]
  6. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21, 1729 (1996).
    [CrossRef]
  7. J. W. Arkwright, D. B. Mortimore, and R. M. Adnams, Electron. Lett. 27, 737 (1991).
    [CrossRef]
  8. M. Salsi, C. Koebele, D. Sperti, P. Tran, H. Mardoyan, P. Brindel, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Bigot-Astruc, L. Provost, and G. Charlet, J. Lightwave Technol. 30, 618 (2012).
    [CrossRef]

2012

N. Riesen, J. D. Love, and J. W. Arkwright, IEEE Photon. Technol. Lett. 24, 344 (2012).
[CrossRef]

N. Riesen and J. D. Love, IEEE J. Quantum Electron. 48, 941 (2012).
[CrossRef]

M. Salsi, C. Koebele, D. Sperti, P. Tran, H. Mardoyan, P. Brindel, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Bigot-Astruc, L. Provost, and G. Charlet, J. Lightwave Technol. 30, 618 (2012).
[CrossRef]

2011

N. Riesen, and J. D. Love, Opt. Quantum Electron. 42, 577(2011).
[CrossRef]

1996

1991

J. W. Arkwright, D. B. Mortimore, and R. M. Adnams, Electron. Lett. 27, 737 (1991).
[CrossRef]

1986

Adnams, R. M.

J. W. Arkwright, D. B. Mortimore, and R. M. Adnams, Electron. Lett. 27, 737 (1991).
[CrossRef]

Arkwright, J. W.

N. Riesen, J. D. Love, and J. W. Arkwright, IEEE Photon. Technol. Lett. 24, 344 (2012).
[CrossRef]

J. W. Arkwright, D. B. Mortimore, and R. M. Adnams, Electron. Lett. 27, 737 (1991).
[CrossRef]

Bigo, S.

Bigot-Astruc, M.

Boutin, A.

Brindel, P.

Charlet, G.

Davis, K. M.

Hirao, K.

Kim, B. Y.

Koebele, C.

Love, J. D.

N. Riesen, J. D. Love, and J. W. Arkwright, IEEE Photon. Technol. Lett. 24, 344 (2012).
[CrossRef]

N. Riesen and J. D. Love, IEEE J. Quantum Electron. 48, 941 (2012).
[CrossRef]

N. Riesen, and J. D. Love, Opt. Quantum Electron. 42, 577(2011).
[CrossRef]

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983), pp. 542–546.

Mardoyan, H.

Miura, K.

Mortimore, D. B.

J. W. Arkwright, D. B. Mortimore, and R. M. Adnams, Electron. Lett. 27, 737 (1991).
[CrossRef]

Provost, L.

Riesen, N.

N. Riesen, J. D. Love, and J. W. Arkwright, IEEE Photon. Technol. Lett. 24, 344 (2012).
[CrossRef]

N. Riesen and J. D. Love, IEEE J. Quantum Electron. 48, 941 (2012).
[CrossRef]

N. Riesen, and J. D. Love, Opt. Quantum Electron. 42, 577(2011).
[CrossRef]

Salsi, M.

Shaw, H. J.

Sillard, P.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983), pp. 542–546.

Sorin, W. V.

Sperti, D.

Sugimoto, N.

Tran, P.

Verluise, F.

Electron. Lett.

J. W. Arkwright, D. B. Mortimore, and R. M. Adnams, Electron. Lett. 27, 737 (1991).
[CrossRef]

IEEE J. Quantum Electron.

N. Riesen and J. D. Love, IEEE J. Quantum Electron. 48, 941 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

N. Riesen, J. D. Love, and J. W. Arkwright, IEEE Photon. Technol. Lett. 24, 344 (2012).
[CrossRef]

J. Lightwave Technol.

Opt. Lett.

Opt. Quantum Electron.

N. Riesen, and J. D. Love, Opt. Quantum Electron. 42, 577(2011).
[CrossRef]

Other

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983), pp. 542–546.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Linear sequence of MSCs.

Fig. 2.
Fig. 2.

Two-core fiber MSC with LP11 field shown schematically in fiber 1.

Fig. 3.
Fig. 3.

Three-core fiber MSC with LP11 field shown schematically in fiber 1.

Fig. 4.
Fig. 4.

Decoupling of an LP11 mode (shown in insets) from a four-mode core, to two outer cores with angular offset ϕ=π/2l+nπ/l, where l=0 and n=0. The total decoupled power is independent of the mode’s spatial orientation α, as demonstrated for (a) α=0, (b) α=π/8, (c) α=π/4, and (d) α=π/2.

Fig. 5.
Fig. 5.

Decoupling of an LP21 mode (shown in insets) from a four-mode core, to two outer cores with angular offset ϕ=π/2l+nπ/l, where l=2 and n=1. The total decoupled power is again independent of the mode’s spatial orientation α, as demonstrated for (a) α=0, (b) α=π/16, (c) α=π/8, and (d) α=π/4.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

fi(z)=bi(z)ejβzi=1,2,3,
db1dz=jCb2+jC¯b3;db2dz=jCb1;db3dz=jC¯b1.
P1(z)=|b1(z)|2=cos2(Ωz),
P2(z)=|b2(z)|2=C2Ω2sin2(Ωz),
P3(z)=|b3(z)|2=C¯2Ω2sin2(Ωz),
C=CRcos(l(αϕ))C¯=CRcos(lα),
Ω=CRcos2(l(αϕ))+cos2(lα).
P1(z)=cos2(CRz),
P2(z)=sin2(lα)sin2(CRz),
P3(z)=cos2(lα)sin2(CRz).
PT=P2(z)+P3(z)=sin2(CRz),
CR=(1)l22kρ2Δ2u1u2(nco,2)3/2ρ1v1v23(nco,1)1/2Kl(w1d/ρ1)K1(w1)Kl1(w2)Kl+1(w2),

Metrics