Abstract

A phase adjustment technique employing optical spectrum processing is proposed to suppress the dispersion induced phase noise (PN) in optically generated millimeter-wave (MMW) and fiber transmission. A phase shift between the two beating optical tones in an optical MMW link is introduced by an optical spectrum processor (OSP) to compensate the phase mismatch between them, which results from fiber dispersion and deteriorates the PN of optically generated MMW signals. A MMW PN amelioration of 12.63 dB at 10 kHz offset and 11.23 dB at 100 kHz offset is achieved in a 40 GHz, 25 km optical MMW link thanks to this OSP.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Diehl, V. Urick, C. McDermitt, F. Bucholtz, P. Devgan, and K. Williams, IEEE Trans. Microwave Theory Tech. 60, 195 (2012).
    [CrossRef]
  2. J. Payne and W. Shillue, in IEEE International Topical Meeting on Microwave Photonics (IEEE, 2002), pp. 9–12.
  3. K. Lau, Broadband Microwave Fiber-Optic Links with RF Phase Control for Phased-Array Antennas, Springer Series in Optical Sciences (Springer, 2011).
  4. J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
    [CrossRef]
  5. G. Qi, J. Yao, J. Seregelyi, S. Paquet, C. Bélisle, X. Zhang, K. Wu, and R. Kashyap, J. Lightwave Technol. 24, 4861 (2006).
    [CrossRef]
  6. C. Wei and J. Chen, Opt. Express 18, 20774 (2010).
    [CrossRef]
  7. S. T. Cundiff and A. M. Weiner, Nat. Photonics 4, 760 (2010).
    [CrossRef]
  8. P. Gallion and G. Debarge, IEEE J. Quantum Electron. 20, 343 (1984).
    [CrossRef]
  9. T. Shao, F. Parésys, G. Maury, Y. L. Guennec, and B. Cabon, J. Lightwave Technol. 30, 876 (2012).
    [CrossRef]
  10. W. P. Robins, Phase Noise in Signal Sources (Peregrinus on behalf of the Institution of Electrical Engineers, 1982).

2012 (2)

J. Diehl, V. Urick, C. McDermitt, F. Bucholtz, P. Devgan, and K. Williams, IEEE Trans. Microwave Theory Tech. 60, 195 (2012).
[CrossRef]

T. Shao, F. Parésys, G. Maury, Y. L. Guennec, and B. Cabon, J. Lightwave Technol. 30, 876 (2012).
[CrossRef]

2010 (2)

C. Wei and J. Chen, Opt. Express 18, 20774 (2010).
[CrossRef]

S. T. Cundiff and A. M. Weiner, Nat. Photonics 4, 760 (2010).
[CrossRef]

2007 (1)

J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
[CrossRef]

2006 (1)

1984 (1)

P. Gallion and G. Debarge, IEEE J. Quantum Electron. 20, 343 (1984).
[CrossRef]

Bélisle, C.

Bucholtz, F.

J. Diehl, V. Urick, C. McDermitt, F. Bucholtz, P. Devgan, and K. Williams, IEEE Trans. Microwave Theory Tech. 60, 195 (2012).
[CrossRef]

Cabon, B.

Capmany, J.

J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
[CrossRef]

Chen, J.

Cundiff, S. T.

S. T. Cundiff and A. M. Weiner, Nat. Photonics 4, 760 (2010).
[CrossRef]

Debarge, G.

P. Gallion and G. Debarge, IEEE J. Quantum Electron. 20, 343 (1984).
[CrossRef]

Devgan, P.

J. Diehl, V. Urick, C. McDermitt, F. Bucholtz, P. Devgan, and K. Williams, IEEE Trans. Microwave Theory Tech. 60, 195 (2012).
[CrossRef]

Diehl, J.

J. Diehl, V. Urick, C. McDermitt, F. Bucholtz, P. Devgan, and K. Williams, IEEE Trans. Microwave Theory Tech. 60, 195 (2012).
[CrossRef]

Gallion, P.

P. Gallion and G. Debarge, IEEE J. Quantum Electron. 20, 343 (1984).
[CrossRef]

Guennec, Y. L.

Kashyap, R.

Lau, K.

K. Lau, Broadband Microwave Fiber-Optic Links with RF Phase Control for Phased-Array Antennas, Springer Series in Optical Sciences (Springer, 2011).

Maury, G.

McDermitt, C.

J. Diehl, V. Urick, C. McDermitt, F. Bucholtz, P. Devgan, and K. Williams, IEEE Trans. Microwave Theory Tech. 60, 195 (2012).
[CrossRef]

Novak, D.

J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
[CrossRef]

Paquet, S.

Parésys, F.

Payne, J.

J. Payne and W. Shillue, in IEEE International Topical Meeting on Microwave Photonics (IEEE, 2002), pp. 9–12.

Qi, G.

Robins, W. P.

W. P. Robins, Phase Noise in Signal Sources (Peregrinus on behalf of the Institution of Electrical Engineers, 1982).

Seregelyi, J.

Shao, T.

Shillue, W.

J. Payne and W. Shillue, in IEEE International Topical Meeting on Microwave Photonics (IEEE, 2002), pp. 9–12.

Urick, V.

J. Diehl, V. Urick, C. McDermitt, F. Bucholtz, P. Devgan, and K. Williams, IEEE Trans. Microwave Theory Tech. 60, 195 (2012).
[CrossRef]

Wei, C.

Weiner, A. M.

S. T. Cundiff and A. M. Weiner, Nat. Photonics 4, 760 (2010).
[CrossRef]

Williams, K.

J. Diehl, V. Urick, C. McDermitt, F. Bucholtz, P. Devgan, and K. Williams, IEEE Trans. Microwave Theory Tech. 60, 195 (2012).
[CrossRef]

Wu, K.

Yao, J.

Zhang, X.

IEEE J. Quantum Electron. (1)

P. Gallion and G. Debarge, IEEE J. Quantum Electron. 20, 343 (1984).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. Diehl, V. Urick, C. McDermitt, F. Bucholtz, P. Devgan, and K. Williams, IEEE Trans. Microwave Theory Tech. 60, 195 (2012).
[CrossRef]

J. Lightwave Technol. (2)

Nat. Photonics (2)

J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007).
[CrossRef]

S. T. Cundiff and A. M. Weiner, Nat. Photonics 4, 760 (2010).
[CrossRef]

Opt. Express (1)

Other (3)

J. Payne and W. Shillue, in IEEE International Topical Meeting on Microwave Photonics (IEEE, 2002), pp. 9–12.

K. Lau, Broadband Microwave Fiber-Optic Links with RF Phase Control for Phased-Array Antennas, Springer Series in Optical Sciences (Springer, 2011).

W. P. Robins, Phase Noise in Signal Sources (Peregrinus on behalf of the Institution of Electrical Engineers, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Optical spectrum of a single frequency laser with phase fluctuation.

Fig. 2.
Fig. 2.

(a) Optical spectrum without dispersion, (b) electrical spectrum detected by PD without dispersion, (c) optical spectrum after dispersion, and (d) electrical spectrum detected by PD after dispersion.

Fig. 3.
Fig. 3.

Experimental setup for the proposed optical MMW link with PN suppression employing OSP.

Fig. 4.
Fig. 4.

Comparison between simulation and experimental results of optically generated MMW PN at a frequency offset of 10 kHz.

Fig. 5.
Fig. 5.

(a) Electrical spectrum of optically generated 40 GHz MMW with and without suppression and (b) PN of optically generated 40 GHz MMW with and without suppression.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

EO=Cexpjωt+p=,p0+α(p)expj[(ω+p)t+ψ(p)]+Cexpj(ω+Ω)t+p=,p0+α(p)expj[(ω+Ω+p)t+ψ(p)],
IΩ+p=Re{Cα(p)expj[(Ω+p)t+ψ(p)β1ΩLβ2ΩpL2]+Cα(p)expj[(Ω+p)tψ(p)β1ΩL+β2ΩpL2]},
IΩ+p=β2ΩpLCα(p)sin[(Ω+p)t+ψ(p)β1ΩL].
Immw=C{sinΩt+p>0+PNpsin[(Ω+p)t+ψ(p)]p>0+PNpsin[(Ωp)tψ(p)]},
PNp=α(p)(Ωpβ2L)2C.

Metrics