Abstract

We report a distributed optical fiber birefringence measurement method based on homodyne Brillouin optical time-domain reflectometry (BOTDR). Unlike conventional BOTDR, which requires scanning of the local oscillator to get the Brillouin spectrum, instead we propose the beat period measurement of fast and slow components of the backscattered Brillouin signal in single-mode fibers using homodyne detection. The beat period is measured by detecting the envelope of the Brillouin beat signal, which gives the beat length at different fiber locations, so that birefringence can be calculated accordingly. The distributed birefringence of a 1.7 km SMF-28 and a 4.3 km large-effective-area fiber were measured with 0.6 m spatial resolution without frequency scanning of the Brillouin spectrum.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Galtarossa and C. R. Menyuk, Polarization Mode Dispersion (Springer, 2005).
  2. M. E. Froggatt, D. K. Gifford, S. Kreger, M. Wolfe, and B. J. Soller, J. Lightwave Technol. 24, 4149 (2006).
    [CrossRef]
  3. A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, Opt. Lett. 25, 384 (2000).
    [CrossRef]
  4. A. Galtarossa and L. Palmieri, J. Lightwave Technol. 22, 1103 (2004).
    [CrossRef]
  5. B. Huttner, B. Gisin, and N. Gisin, J. Lightwave Technol. 17, 1843 (1999).
    [CrossRef]
  6. M. Wuilpart, P. Megret, M. Blondel, A. Rogers, and Y. Defosse, IEEE Photon. Technol. Lett. 13, 836 (2001).
    [CrossRef]
  7. T. Gogolla and K. Krebber, J. Lightwave Technol. 18, 320 (2000).
    [CrossRef]
  8. L. Thévenaz, M. Facchini, A. Fellay, M. Niklés, and P. Robert, in Conference Digest OFMC’97 (NPL Publication, 1997), p. 82.
  9. S. Xie, L. Chen, and X. Bao, Appl. Opt. 51, 4359 (2012).
    [CrossRef]
  10. X. Bao and L. Chen, Sensors 12, 8601 (2012).
    [CrossRef]
  11. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, Opt. Lett. 5, 273 (1980).
    [CrossRef]

2012

2006

2004

2001

M. Wuilpart, P. Megret, M. Blondel, A. Rogers, and Y. Defosse, IEEE Photon. Technol. Lett. 13, 836 (2001).
[CrossRef]

2000

1999

1980

Bao, X.

Blondel, M.

M. Wuilpart, P. Megret, M. Blondel, A. Rogers, and Y. Defosse, IEEE Photon. Technol. Lett. 13, 836 (2001).
[CrossRef]

Chen, L.

Defosse, Y.

M. Wuilpart, P. Megret, M. Blondel, A. Rogers, and Y. Defosse, IEEE Photon. Technol. Lett. 13, 836 (2001).
[CrossRef]

Eickhoff, W.

Facchini, M.

L. Thévenaz, M. Facchini, A. Fellay, M. Niklés, and P. Robert, in Conference Digest OFMC’97 (NPL Publication, 1997), p. 82.

Fellay, A.

L. Thévenaz, M. Facchini, A. Fellay, M. Niklés, and P. Robert, in Conference Digest OFMC’97 (NPL Publication, 1997), p. 82.

Froggatt, M. E.

Galtarossa, A.

Gifford, D. K.

Gisin, B.

Gisin, N.

Gogolla, T.

Huttner, B.

Krebber, K.

Kreger, S.

Megret, P.

M. Wuilpart, P. Megret, M. Blondel, A. Rogers, and Y. Defosse, IEEE Photon. Technol. Lett. 13, 836 (2001).
[CrossRef]

Menyuk, C. R.

A. Galtarossa and C. R. Menyuk, Polarization Mode Dispersion (Springer, 2005).

Niklés, M.

L. Thévenaz, M. Facchini, A. Fellay, M. Niklés, and P. Robert, in Conference Digest OFMC’97 (NPL Publication, 1997), p. 82.

Palmieri, L.

Rashleigh, S. C.

Robert, P.

L. Thévenaz, M. Facchini, A. Fellay, M. Niklés, and P. Robert, in Conference Digest OFMC’97 (NPL Publication, 1997), p. 82.

Rogers, A.

M. Wuilpart, P. Megret, M. Blondel, A. Rogers, and Y. Defosse, IEEE Photon. Technol. Lett. 13, 836 (2001).
[CrossRef]

Schiano, M.

Soller, B. J.

Tambosso, T.

Thévenaz, L.

L. Thévenaz, M. Facchini, A. Fellay, M. Niklés, and P. Robert, in Conference Digest OFMC’97 (NPL Publication, 1997), p. 82.

Ulrich, R.

Wolfe, M.

Wuilpart, M.

M. Wuilpart, P. Megret, M. Blondel, A. Rogers, and Y. Defosse, IEEE Photon. Technol. Lett. 13, 836 (2001).
[CrossRef]

Xie, S.

Appl. Opt.

IEEE Photon. Technol. Lett.

M. Wuilpart, P. Megret, M. Blondel, A. Rogers, and Y. Defosse, IEEE Photon. Technol. Lett. 13, 836 (2001).
[CrossRef]

J. Lightwave Technol.

Opt. Lett.

Sensors

X. Bao and L. Chen, Sensors 12, 8601 (2012).
[CrossRef]

Other

A. Galtarossa and C. R. Menyuk, Polarization Mode Dispersion (Springer, 2005).

L. Thévenaz, M. Facchini, A. Fellay, M. Niklés, and P. Robert, in Conference Digest OFMC’97 (NPL Publication, 1997), p. 82.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Diagram of the beating Brillouin signal.

Fig. 2.
Fig. 2.

Schematic diagram of the experimental setup for measuring distributed fiber birefringence.

Fig. 3.
Fig. 3.

Measurement results of SMF-28. (a) BFC of the entire fiber; (b) distributed beat length and birefringence of the entire fiber; (c) BFC of the first 80 m fiber; (d) distributed beat length and birefringence of the first 80 m fiber; (e), (f) histogram of the beat length and birefringence of the entire fiber.

Fig. 4.
Fig. 4.

Measurement results of LEAF. (a) BFC of the entire fiber; (b) distributed beat length and birefringence of the entire fiber; (c) BFC of the last 75 m fiber; (d) distributed beat length and birefringence of the last 75 m fiber; (e), (f) histogram of the beat length and birefringence of the entire fiber.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Ein(t)={E00tT0otherwise,
EBS(t)=(tT)c/2ntc/2nA(z)Ein(t(np+n)z/c)exp[iωB(tnz/c)]dz,
EBS(t)=E0(tT)c/2ntc/2n{Af(z)exp[iωf(tnfz/c)]+As(z)exp[iωs(tnsz/c)]}dz,
IBS(t)=2RE02Re{(tT)c/2ntc/2nAf(z)exp[iωf(tnfz/c)]dz(tT)c/2ntc/2n(As)*(z)exp[iωs(tnsz/c)]dz}=K(ct/2n)cos[Δωt/2+Δn(ct/2n)ωs/c+φ],
F(z)=D+K(z)cos[Δβ(z)z+φ],

Metrics