Abstract

We have demonstrated a CW, multiwatt, dual-wavelength cryogenically cooled, resonantly (in-band) pumped Ho3+:YVO4 laser with nearly quantum-defect-limited performance. The Ho3+(2%):YVO4 gain element, which was maintained at 80K and pumped by a Tm-fiber laser at 1966 nm, emitted at wavelengths of either 2053 or 2068 nm, or both at the same time, depending on the outcoupling loss and the pump power. We have achieved laser operation with a maximum slope efficiency of 92%. This is, to the best of our knowledge, the highest slope efficiency ever demonstrated for any Ho3+-doped laser.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. W. Kang, H. Lee, J. Petersen, J. H. Teichman, and A. J. Welch, Proc. SPIE 6078, 607815 (2006).
    [CrossRef]
  2. T. M. Taczak and D. K. Killinger, Appl. Opt. 37, 8460(1998).
    [CrossRef]
  3. S. M. Hannon and J. A. Thomson, J. Mod. Opt. 41, 2175 (1994).
    [CrossRef]
  4. G. D. Wilkins, Wright Laboratories Tech. Rep. WL-TR-96-1017 (1996).
  5. W. Shi, Y. J. Ding, and P. G. Schunemann, Opt. Commun. 233, 183 (2004).
    [CrossRef]
  6. N. Ter-Gabrielyan, V. Fromzel, T. Lukasiewicz, W. Ryba-Romanowski, and M. Dubinskii, Opt. Lett. 36, 1218 (2011).
    [CrossRef]
  7. A. I. Zagumennyi, P. A. Popov, F. Zerouk, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, Quantum Electron. 38, 227 (2008).
    [CrossRef]
  8. G. A. Newburgh and M. Dubinskii, Proc. SPIE 8039, 803905 (2011).
    [CrossRef]
  9. G. Li, B.-Q. Yao, P.-B. Meng, Y.-L. Ju, and Y.-Z. Wang, Opt. Lett. 36, 2934 (2011).
    [CrossRef]

2011 (3)

2008 (1)

A. I. Zagumennyi, P. A. Popov, F. Zerouk, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, Quantum Electron. 38, 227 (2008).
[CrossRef]

2006 (1)

H. W. Kang, H. Lee, J. Petersen, J. H. Teichman, and A. J. Welch, Proc. SPIE 6078, 607815 (2006).
[CrossRef]

2004 (1)

W. Shi, Y. J. Ding, and P. G. Schunemann, Opt. Commun. 233, 183 (2004).
[CrossRef]

1998 (1)

1994 (1)

S. M. Hannon and J. A. Thomson, J. Mod. Opt. 41, 2175 (1994).
[CrossRef]

Ding, Y. J.

W. Shi, Y. J. Ding, and P. G. Schunemann, Opt. Commun. 233, 183 (2004).
[CrossRef]

Dubinskii, M.

Fromzel, V.

Hannon, S. M.

S. M. Hannon and J. A. Thomson, J. Mod. Opt. 41, 2175 (1994).
[CrossRef]

Ju, Y.-L.

Kang, H. W.

H. W. Kang, H. Lee, J. Petersen, J. H. Teichman, and A. J. Welch, Proc. SPIE 6078, 607815 (2006).
[CrossRef]

Killinger, D. K.

Kutovoi, S. A.

A. I. Zagumennyi, P. A. Popov, F. Zerouk, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, Quantum Electron. 38, 227 (2008).
[CrossRef]

Lee, H.

H. W. Kang, H. Lee, J. Petersen, J. H. Teichman, and A. J. Welch, Proc. SPIE 6078, 607815 (2006).
[CrossRef]

Li, G.

Lukasiewicz, T.

Meng, P.-B.

Newburgh, G. A.

G. A. Newburgh and M. Dubinskii, Proc. SPIE 8039, 803905 (2011).
[CrossRef]

Petersen, J.

H. W. Kang, H. Lee, J. Petersen, J. H. Teichman, and A. J. Welch, Proc. SPIE 6078, 607815 (2006).
[CrossRef]

Popov, P. A.

A. I. Zagumennyi, P. A. Popov, F. Zerouk, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, Quantum Electron. 38, 227 (2008).
[CrossRef]

Ryba-Romanowski, W.

Schunemann, P. G.

W. Shi, Y. J. Ding, and P. G. Schunemann, Opt. Commun. 233, 183 (2004).
[CrossRef]

Shcherbakov, I. A.

A. I. Zagumennyi, P. A. Popov, F. Zerouk, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, Quantum Electron. 38, 227 (2008).
[CrossRef]

Shi, W.

W. Shi, Y. J. Ding, and P. G. Schunemann, Opt. Commun. 233, 183 (2004).
[CrossRef]

Taczak, T. M.

Teichman, J. H.

H. W. Kang, H. Lee, J. Petersen, J. H. Teichman, and A. J. Welch, Proc. SPIE 6078, 607815 (2006).
[CrossRef]

Ter-Gabrielyan, N.

Thomson, J. A.

S. M. Hannon and J. A. Thomson, J. Mod. Opt. 41, 2175 (1994).
[CrossRef]

Wang, Y.-Z.

Welch, A. J.

H. W. Kang, H. Lee, J. Petersen, J. H. Teichman, and A. J. Welch, Proc. SPIE 6078, 607815 (2006).
[CrossRef]

Wilkins, G. D.

G. D. Wilkins, Wright Laboratories Tech. Rep. WL-TR-96-1017 (1996).

Yao, B.-Q.

Zagumennyi, A. I.

A. I. Zagumennyi, P. A. Popov, F. Zerouk, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, Quantum Electron. 38, 227 (2008).
[CrossRef]

Zavartsev, Y. D.

A. I. Zagumennyi, P. A. Popov, F. Zerouk, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, Quantum Electron. 38, 227 (2008).
[CrossRef]

Zerouk, F.

A. I. Zagumennyi, P. A. Popov, F. Zerouk, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, Quantum Electron. 38, 227 (2008).
[CrossRef]

Appl. Opt. (1)

J. Mod. Opt. (1)

S. M. Hannon and J. A. Thomson, J. Mod. Opt. 41, 2175 (1994).
[CrossRef]

Opt. Commun. (1)

W. Shi, Y. J. Ding, and P. G. Schunemann, Opt. Commun. 233, 183 (2004).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (2)

H. W. Kang, H. Lee, J. Petersen, J. H. Teichman, and A. J. Welch, Proc. SPIE 6078, 607815 (2006).
[CrossRef]

G. A. Newburgh and M. Dubinskii, Proc. SPIE 8039, 803905 (2011).
[CrossRef]

Quantum Electron. (1)

A. I. Zagumennyi, P. A. Popov, F. Zerouk, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, Quantum Electron. 38, 227 (2008).
[CrossRef]

Other (1)

G. D. Wilkins, Wright Laboratories Tech. Rep. WL-TR-96-1017 (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Simplified layout of the experimental laser setup. All the components are properly listed in the body of the paper.

Fig. 2.
Fig. 2.

Output power versus incident pump-power dependence for the cryo-cooled Ho 3 + ( 2 % ) : YVO 4 laser resonantly pumped at 1966 nm, measured with different output coupler reflectivities R : a)  R = 75 % , (b)  R = 81 % , and (c)  R = 88 % .

Fig. 3.
Fig. 3.

Laser output spectrum of the resonantly pumped, cryo-cooled Ho 3 + ( 2 % ) : YVO 4 laser at the onset of dual-wavelength lasing. Presented spectral distribution corresponds to output coupler reflectivity of 81% [Fig. 2(b)] and incident pump power 7 W .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ g / 2053 = β σ e / 2053 ( 1 β ) σ a / 2053 = σ g / 2068 = β σ e / 2068 ( 1 β ) σ a / 2068 ,
2 l N 0 σ g / 2068 = ln ( 1 / R OC ) + 2 L ,
σ a / 2053 ( R OC ) = ( ln ( 1 / R OC ) + 2 L ) ( σ e / 2068 σ e / 2053 ) ln ( 1 / R OC ) + 2 ( L l N 0 σ e / 2068 ) .

Metrics