Abstract

Metallic wires can discriminate light polarization due to strong absorption of electric fields oscillating in parallel to wires. Here, we explore polarization-based biosensing of DNA hybridization in situ by employing metal target-conjugated nanoparticles to form a wire-grid polarizer (WGP) as complementary DNA strands hybridize. Experimental results using gold nanoparticles of 15 nm diameter to form a WGP of 400 nm period suggest that polarization extinction can detect DNA hybridization with a limit of detection in the range of 1 nM concentration. The sensitivity may be improved by more than an order of magnitude if larger nanoparticles are employed to define WGPs at a period between 400 and 500 nm.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription