Abstract

Four-wave mixing (FWM) can be either stimulated or occur spontaneously. The first process is intrinsically much stronger and well understood through classical nonlinear optics. The latter, also known as parametric fluorescence, can be explained only in the framework of a quantum theory of light. We experimentally demonstrated that, in a microring resonator, there is a simple relation between the efficiencies of these two processes that is independent of the nonlinearity and ring size. In particular, we have shown the average power generated by parametric fluorescence can be immediately estimated from a classical FWM experiment. These results suggest that classical nonlinear characterization of a photonic integrated structure can provide accurate information on its nonlinear quantum properties.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spontaneous four-wave mixing in microring resonators

L. G. Helt, Zhenshan Yang, Marco Liscidini, and J. E. Sipe
Opt. Lett. 35(18) 3006-3008 (2010)

Triply resonant four-wave mixing in silicon-coupled resonator microring waveguides

J. R. Ong, R. Kumar, and S. Mookherjea
Opt. Lett. 39(19) 5653-5656 (2014)

Four-wave mixing in silicon coupled-cavity resonators with port-selective, orthogonal supermode excitation

Xiaoge Zeng, Cale M. Gentry, and Miloš A. Popović
Opt. Lett. 40(9) 2120-2123 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription