Abstract

Few-cycle high-contrast vortex beams with pulse durations around 8 fs were generated from a Ti:sapphire laser oscillator with a single diffractive–refractive component. Angular and temporal pulse properties were characterized with an advanced time-wavefront sensor. The temporal transfer indicates a fairly complete self-compensation.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Mariyenko, J. Strohaber, and C. J. G. Uiterwaal, Opt. Express 13, 7599 (2005).
    [CrossRef]
  2. V. G. Shvedov, C. Hnatovsky, W. Krolikowski, and A. V. Rode, Opt. Lett. 35, 2660 (2010).
    [CrossRef]
  3. K. Bezuhanov, A. Dreischuh, G. G. Paulus, M. G. Schätzel, and H. Walther, Opt. Lett. 29, 1942 (2004).
    [CrossRef]
  4. I. Zeylikovich, H. I. Sztul, V. Kartazaev, T. Le, and R. R. Alfano, Opt. Lett. 32, 2025 (2007).
    [CrossRef]
  5. A. Schwarz and W. Rudolph, Opt. Lett. 33, 2970 (2008).
    [CrossRef]
  6. K. Yamane, Y. Toda, and R. Morita, in Conference on Lasers and Electro-Optics (2012), paper JTu1K.4.
  7. W. A. Traub, J. Opt. Soc. Am. A 7, 1779 (1990).
    [CrossRef]
  8. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, Opt. Lett. 17, 221 (1992).
    [CrossRef]
  9. A. Richter, M. Bock, J. Jahns, and R. Grunwald, Proc. SPIE 7613, 761308 (2010).
    [CrossRef]
  10. M. Bock, J. Jahns, and R. Grunwald, in Conference on Lasers and Electro-Optics (2012), postdeadline paper CTh5C.5.
  11. J. Leach, S. Keen, M. Padgett, C. Saunter, and G. D. Love, Opt. Express 14, 11919 (2006).
    [CrossRef]
  12. M. Bock, S. K. Das, C. Fischer, M. Diehl, P. Börner, and R. Grunwald, Opt. Lett. 37, 1154 (2012).
    [CrossRef]
  13. F. Tamburini, B. Thidé, G. Molina-Terriza, and G. Anzolin, Nat. Phys. 7, 195 (2011).
    [CrossRef]

2012 (1)

2011 (1)

F. Tamburini, B. Thidé, G. Molina-Terriza, and G. Anzolin, Nat. Phys. 7, 195 (2011).
[CrossRef]

2010 (2)

A. Richter, M. Bock, J. Jahns, and R. Grunwald, Proc. SPIE 7613, 761308 (2010).
[CrossRef]

V. G. Shvedov, C. Hnatovsky, W. Krolikowski, and A. V. Rode, Opt. Lett. 35, 2660 (2010).
[CrossRef]

2008 (1)

2007 (1)

2006 (1)

2005 (1)

2004 (1)

1992 (1)

1990 (1)

Alfano, R. R.

Anzolin, G.

F. Tamburini, B. Thidé, G. Molina-Terriza, and G. Anzolin, Nat. Phys. 7, 195 (2011).
[CrossRef]

Bezuhanov, K.

Bock, M.

M. Bock, S. K. Das, C. Fischer, M. Diehl, P. Börner, and R. Grunwald, Opt. Lett. 37, 1154 (2012).
[CrossRef]

A. Richter, M. Bock, J. Jahns, and R. Grunwald, Proc. SPIE 7613, 761308 (2010).
[CrossRef]

M. Bock, J. Jahns, and R. Grunwald, in Conference on Lasers and Electro-Optics (2012), postdeadline paper CTh5C.5.

Börner, P.

Das, S. K.

Diehl, M.

Dreischuh, A.

Fischer, C.

Grunwald, R.

M. Bock, S. K. Das, C. Fischer, M. Diehl, P. Börner, and R. Grunwald, Opt. Lett. 37, 1154 (2012).
[CrossRef]

A. Richter, M. Bock, J. Jahns, and R. Grunwald, Proc. SPIE 7613, 761308 (2010).
[CrossRef]

M. Bock, J. Jahns, and R. Grunwald, in Conference on Lasers and Electro-Optics (2012), postdeadline paper CTh5C.5.

Heckenberg, N. R.

Hnatovsky, C.

Jahns, J.

A. Richter, M. Bock, J. Jahns, and R. Grunwald, Proc. SPIE 7613, 761308 (2010).
[CrossRef]

M. Bock, J. Jahns, and R. Grunwald, in Conference on Lasers and Electro-Optics (2012), postdeadline paper CTh5C.5.

Kartazaev, V.

Keen, S.

Krolikowski, W.

Le, T.

Leach, J.

Love, G. D.

Mariyenko, G.

McDuff, R.

Molina-Terriza, G.

F. Tamburini, B. Thidé, G. Molina-Terriza, and G. Anzolin, Nat. Phys. 7, 195 (2011).
[CrossRef]

Morita, R.

K. Yamane, Y. Toda, and R. Morita, in Conference on Lasers and Electro-Optics (2012), paper JTu1K.4.

Padgett, M.

Paulus, G. G.

Richter, A.

A. Richter, M. Bock, J. Jahns, and R. Grunwald, Proc. SPIE 7613, 761308 (2010).
[CrossRef]

Rode, A. V.

Rudolph, W.

Saunter, C.

Schätzel, M. G.

Schwarz, A.

Shvedov, V. G.

Smith, C. P.

Strohaber, J.

Sztul, H. I.

Tamburini, F.

F. Tamburini, B. Thidé, G. Molina-Terriza, and G. Anzolin, Nat. Phys. 7, 195 (2011).
[CrossRef]

Thidé, B.

F. Tamburini, B. Thidé, G. Molina-Terriza, and G. Anzolin, Nat. Phys. 7, 195 (2011).
[CrossRef]

Toda, Y.

K. Yamane, Y. Toda, and R. Morita, in Conference on Lasers and Electro-Optics (2012), paper JTu1K.4.

Traub, W. A.

Uiterwaal, C. J. G.

Walther, H.

White, A. G.

Yamane, K.

K. Yamane, Y. Toda, and R. Morita, in Conference on Lasers and Electro-Optics (2012), paper JTu1K.4.

Zeylikovich, I.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Setup for self-compensated generation and diagnostics of few-cycle vortex pulses (schematically: NDF, neutral density filter; SLM, spatial light modulator; M, mirror; and BS, beam splitter). An OAM is induced by a spiral grating (period 8 μm, effective height 3/2λ, diameter 2 mm, and 3 mm thick fused silica substrate). The time-wavefront sensor combines an interferometer with a reconfigurable Shack–Hartmann sensor [11]. Reflective and adaptive operation is enabled by programming microaxicons in an LCoS-SLM. The sub-beams are axially extended needle beams. Pulse duration and wavefront are measured separately. Second order autocorrelation is detected on an EMCCD camera. In the OAM measurement, an additional microscope objective is used to enlarge the image on the EMCCD.

Fig. 2.
Fig. 2.

Dispersion compensation in the compact setup with a single diffractive–refractive element. (a) Principle. The diffraction of a binary spiral axicon is balanced by a substrate of positive group velocity dispersion. Longer wavelengths (red cone) are stronger diffracted. Therefore, the spatial chirp reaches a minimum within the polychromatic overlapping zone and (b) axial dependence of the GDD at the central wavelength of 800 nm.

Fig. 3.
Fig. 3.

Doughnut beam with OAM at a distance z=4mm. (a) time-integrated intensity profile; (b) theoretical (black line) and measured (blue circles) intensity profiles; (c) vector map detected with a Shack–Hartmann sensor with needle beams; and (d) time integrated radial intensity profile as a function of the propagation distance (linear intensity scale).

Fig. 4.
Fig. 4.

Time-wavefront characteristics of the vortex pulses. (a) Second order autocorrelation traces of initial (black line) and self-compensated pulses (blue triangles). A mixed fit function (sech and Gaussian contributions) delivers a pulse duration of 8.2±0.3fs and (b) screw angles as a function of the radius (blue curve: theoretical curve for L=2).

Metrics