Abstract

Line-defect photonic crystal waveguides exhibit severe propagation losses if they are implemented in semiconductor heterostructures with a weak refractive index contrast. We present, for what we believe is the first time, experimental structures for which we have evidence that fabrication imperfections are not the limiting factor in terms of propagation losses. We demonstrate a loss figure of 335±5dB/cm, which is an improvement by a factor of about 2 with respect to state-of-the-art values. Simulations show that even lower losses can be obtained with different waveguide geometries. In other words, the dominant loss mechanism is related to the waveguide design, and losses are not expected to decrease upon further optimization of the fabrication process.

© 2012 Optical Society of America

Full Article  |  PDF Article
Related Articles
Radiation losses in planar photonic crystals: two-dimensional representation of hole depth and shape by an imaginary dielectric constant

Rolando Ferrini, Romuald Houdré, Henri Benisty, Min Qiu, and Jürgen Moosburger
J. Opt. Soc. Am. B 20(3) 469-478 (2003)

Coupling analysis of heterogeneous integrated InP based photonic crystal triangular lattice band-edge lasers and silicon waveguides

Haroldo T. Hattori, Christian Seassal, Xavier Letartre, Pedro Rojo-Romeo, Jean L. Leclercq, Pierre Viktorovitch, Marc Zussy, Lea di Cioccio, Loubna El Melhaoui, and Jean-Marc Fedeli
Opt. Express 13(9) 3310-3322 (2005)

Low-loss guided modes in photonic crystal waveguides

Dario Gerace and Lucio Claudio Andreani
Opt. Express 13(13) 4939-4951 (2005)

References

  • View by:
  • |
  • |
  • |

  1. K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, Nature Photon. 6, 248 (2012).
    [Crossref]
  2. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nature Photon. 3, 206 (2009).
    [Crossref]
  3. S. Combrié, A. De Rossi, Q. V. Tran, and H. Benisty, Opt. Lett. 33, 1908 (2008).
    [Crossref]
  4. D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, IEEE Photon. Technol. Lett. 21, 24 (2009).
    [Crossref]
  5. M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, Opt. Express 15, 17458 (2007).
    [Crossref]
  6. A. Talneau, M. Mulot, S. Anand, and P. Lalanne, Appl. Phys. Lett. 82, 2577 (2003).
    [Crossref]
  7. G. W. Burr, S. Diziain, and M.-P. Bernal, Opt. Express 16, 6302 (2008).
    [Crossref]
  8. R. M. De La Rue, S. A. De La Rue, C. Sibilia, T. M. Benson, M. Marciniak, and T. Szoplik, eds., Photonic Crystals: Physics and Technology (Springer, 2008), pp. 7–25.
  9. P. Kaspar, R. Kappeler, D. Erni, and H. Jäckel, Opt. Express 19, 24344 (2011).
    [Crossref]
  10. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
    [Crossref]
  11. R. Kappeler, P. Kaspar, and H. Jäckel, Photon. Nano. Fund. Appl. 9, 235 (2011).
    [Crossref]
  12. P. Kaspar, S. Holzapfel, E. J. Windhab, and H. Jäckel, J. Micromech. Microeng. 21, 115003 (2011).
    [Crossref]
  13. N. Shahid, S. Naureen, M. Y. Li, M. Swillo, and S. Anand, J. Vac. Sci. Technol. B 29, 031202 (2011).
    [Crossref]
  14. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, Opt. Express 16, 6227 (2008).
    [Crossref]
  15. W. Kuang and J. D. O’Brien, Opt. Lett. 29, 860 (2004).
    [Crossref]

2012 (1)

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, Nature Photon. 6, 248 (2012).
[Crossref]

2011 (4)

R. Kappeler, P. Kaspar, and H. Jäckel, Photon. Nano. Fund. Appl. 9, 235 (2011).
[Crossref]

P. Kaspar, S. Holzapfel, E. J. Windhab, and H. Jäckel, J. Micromech. Microeng. 21, 115003 (2011).
[Crossref]

N. Shahid, S. Naureen, M. Y. Li, M. Swillo, and S. Anand, J. Vac. Sci. Technol. B 29, 031202 (2011).
[Crossref]

P. Kaspar, R. Kappeler, D. Erni, and H. Jäckel, Opt. Express 19, 24344 (2011).
[Crossref]

2010 (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[Crossref]

2009 (2)

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nature Photon. 3, 206 (2009).
[Crossref]

D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, IEEE Photon. Technol. Lett. 21, 24 (2009).
[Crossref]

2008 (3)

2007 (1)

2004 (1)

2003 (1)

A. Talneau, M. Mulot, S. Anand, and P. Lalanne, Appl. Phys. Lett. 82, 2577 (2003).
[Crossref]

Anand, S.

N. Shahid, S. Naureen, M. Y. Li, M. Swillo, and S. Anand, J. Vac. Sci. Technol. B 29, 031202 (2011).
[Crossref]

A. Talneau, M. Mulot, S. Anand, and P. Lalanne, Appl. Phys. Lett. 82, 2577 (2003).
[Crossref]

Beggs, D. M.

D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, IEEE Photon. Technol. Lett. 21, 24 (2009).
[Crossref]

Benisty, H.

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[Crossref]

Bernal, M.-P.

Burr, G. W.

Cairns, L.

D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, IEEE Photon. Technol. Lett. 21, 24 (2009).
[Crossref]

Combrié, S.

Corcoran, B.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nature Photon. 3, 206 (2009).
[Crossref]

De Rossi, A.

Diziain, S.

Eggleton, B. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nature Photon. 3, 206 (2009).
[Crossref]

Erni, D.

Gomez-Iglesias, A.

Grillet, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nature Photon. 3, 206 (2009).
[Crossref]

Holzapfel, S.

P. Kaspar, S. Holzapfel, E. J. Windhab, and H. Jäckel, J. Micromech. Microeng. 21, 115003 (2011).
[Crossref]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[Crossref]

Jäckel, H.

P. Kaspar, S. Holzapfel, E. J. Windhab, and H. Jäckel, J. Micromech. Microeng. 21, 115003 (2011).
[Crossref]

R. Kappeler, P. Kaspar, and H. Jäckel, Photon. Nano. Fund. Appl. 9, 235 (2011).
[Crossref]

P. Kaspar, R. Kappeler, D. Erni, and H. Jäckel, Opt. Express 19, 24344 (2011).
[Crossref]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[Crossref]

Kappeler, R.

R. Kappeler, P. Kaspar, and H. Jäckel, Photon. Nano. Fund. Appl. 9, 235 (2011).
[Crossref]

P. Kaspar, R. Kappeler, D. Erni, and H. Jäckel, Opt. Express 19, 24344 (2011).
[Crossref]

Kaspar, P.

R. Kappeler, P. Kaspar, and H. Jäckel, Photon. Nano. Fund. Appl. 9, 235 (2011).
[Crossref]

P. Kaspar, S. Holzapfel, E. J. Windhab, and H. Jäckel, J. Micromech. Microeng. 21, 115003 (2011).
[Crossref]

P. Kaspar, R. Kappeler, D. Erni, and H. Jäckel, Opt. Express 19, 24344 (2011).
[Crossref]

Kawaguchi, Y.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, Nature Photon. 6, 248 (2012).
[Crossref]

Krauss, T. F.

D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, IEEE Photon. Technol. Lett. 21, 24 (2009).
[Crossref]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nature Photon. 3, 206 (2009).
[Crossref]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, Opt. Express 16, 6227 (2008).
[Crossref]

Kuang, W.

Kuramochi, E.

Lalanne, P.

A. Talneau, M. Mulot, S. Anand, and P. Lalanne, Appl. Phys. Lett. 82, 2577 (2003).
[Crossref]

Li, J.

Li, M. Y.

N. Shahid, S. Naureen, M. Y. Li, M. Swillo, and S. Anand, J. Vac. Sci. Technol. B 29, 031202 (2011).
[Crossref]

Matsuo, S.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, Nature Photon. 6, 248 (2012).
[Crossref]

Mitsugi, S.

Monat, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nature Photon. 3, 206 (2009).
[Crossref]

Morita, M.

Moss, D. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nature Photon. 3, 206 (2009).
[Crossref]

Mulot, M.

A. Talneau, M. Mulot, S. Anand, and P. Lalanne, Appl. Phys. Lett. 82, 2577 (2003).
[Crossref]

Naureen, S.

N. Shahid, S. Naureen, M. Y. Li, M. Swillo, and S. Anand, J. Vac. Sci. Technol. B 29, 031202 (2011).
[Crossref]

Notomi, M.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, Nature Photon. 6, 248 (2012).
[Crossref]

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, Opt. Express 15, 17458 (2007).
[Crossref]

Nozaki, K.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, Nature Photon. 6, 248 (2012).
[Crossref]

O’Brien, J. D.

O’Faolain, L.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nature Photon. 3, 206 (2009).
[Crossref]

D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, IEEE Photon. Technol. Lett. 21, 24 (2009).
[Crossref]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, Opt. Express 16, 6227 (2008).
[Crossref]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[Crossref]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[Crossref]

Sato, T.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, Nature Photon. 6, 248 (2012).
[Crossref]

Segawa, T.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, Nature Photon. 6, 248 (2012).
[Crossref]

Shahid, N.

N. Shahid, S. Naureen, M. Y. Li, M. Swillo, and S. Anand, J. Vac. Sci. Technol. B 29, 031202 (2011).
[Crossref]

Shinya, A.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, Nature Photon. 6, 248 (2012).
[Crossref]

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, Opt. Express 15, 17458 (2007).
[Crossref]

Suzaki, Y.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, Nature Photon. 6, 248 (2012).
[Crossref]

Swillo, M.

N. Shahid, S. Naureen, M. Y. Li, M. Swillo, and S. Anand, J. Vac. Sci. Technol. B 29, 031202 (2011).
[Crossref]

Takahashi, R.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, Nature Photon. 6, 248 (2012).
[Crossref]

Talneau, A.

A. Talneau, M. Mulot, S. Anand, and P. Lalanne, Appl. Phys. Lett. 82, 2577 (2003).
[Crossref]

Tanabe, T.

Taniyama, H.

Tran, Q. V.

White, T. P.

D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, IEEE Photon. Technol. Lett. 21, 24 (2009).
[Crossref]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nature Photon. 3, 206 (2009).
[Crossref]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, Opt. Express 16, 6227 (2008).
[Crossref]

Windhab, E. J.

P. Kaspar, S. Holzapfel, E. J. Windhab, and H. Jäckel, J. Micromech. Microeng. 21, 115003 (2011).
[Crossref]

Appl. Phys. Lett. (1)

A. Talneau, M. Mulot, S. Anand, and P. Lalanne, Appl. Phys. Lett. 82, 2577 (2003).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (1)

D. M. Beggs, T. P. White, L. Cairns, L. O’Faolain, and T. F. Krauss, IEEE Photon. Technol. Lett. 21, 24 (2009).
[Crossref]

J. Micromech. Microeng. (1)

P. Kaspar, S. Holzapfel, E. J. Windhab, and H. Jäckel, J. Micromech. Microeng. 21, 115003 (2011).
[Crossref]

J. Vac. Sci. Technol. B (1)

N. Shahid, S. Naureen, M. Y. Li, M. Swillo, and S. Anand, J. Vac. Sci. Technol. B 29, 031202 (2011).
[Crossref]

Nature Photon. (2)

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, Nature Photon. 6, 248 (2012).
[Crossref]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, Nature Photon. 3, 206 (2009).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Photon. Nano. Fund. Appl. (1)

R. Kappeler, P. Kaspar, and H. Jäckel, Photon. Nano. Fund. Appl. 9, 235 (2011).
[Crossref]

Other (1)

R. M. De La Rue, S. A. De La Rue, C. Sibilia, T. M. Benson, M. Marciniak, and T. Szoplik, eds., Photonic Crystals: Physics and Technology (Springer, 2008), pp. 7–25.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Propagation loss of a W1 substrate-type PhC waveguide with lattice constant a=380nm. Experimental data (thick black line) are compared to FDTD results (thin colored lines). For the simulations, a cylindrical hole shape is assumed. Since manufactured holes are slightly conical, the simulations were performed for three different hole radii, r=90nm (red), r=95nm (blue), r=100nm (purple). The best agreement is found for r=95nm.

Fig. 2.
Fig. 2.

SEM micrograph of a PhC waveguide of 30 periods with well-aligned access waveguides. The taper sections are 100 μm long and make a transition from 5 μm wide access waveguides to the W1 PhC waveguide. The contribution of the tapers on the overall power loss cancels out when using the cutback method. The propagation loss figure of the access waveguides, however, has to be taken into account: It is 6±1.5dB/cm, measured by the Fabry–Pérot method on a reference waveguide.

Fig. 3.
Fig. 3.

Simulated propagation loss of a W1 waveguide with r/a=0.34 and a shift between the PhC on either side of the waveguide, as indicated by the dashed lines in the inset. An interesting window of low propagation loss opens around a reduced frequency of 0.25. The loss minimum is below 80dB/cm at a reduced frequency of 0.255.

Metrics