Abstract

We propose an ultrafast optical arbitrary waveform synthesizing/analyzing technique demonstrated with 2Tbit/s waveforms. An ultrafast waveform was generated by manipulating the amplitude and phase of a 400 GHz optical frequency comb using a newly developed colorless optical synthesizer. The 400 GHz optical frequency comb was generated from a 25 GHz optical frequency comb using a colorless arrayed waveguide grating. This waveform was then analyzed on the frequency axis using a custom heterodyne-detection technique based on the dual-heterodyne mixing method. The phase and amplitude spectra can be observed in parallel using another optical frequency comb as a reference combined with an arrayed waveguide grating. This optical system, named the ultrafast optical frequency comb synthesizer and analyzer, can synthesize and analyze an arbitrary waveform in the THz frequency region.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Guan, H. C. H. Mulvad, Y. Tomiyama, T. Hirano, T. Hirooka, and M. Nakazawa, in Proceedings of ECOC 2010.
  2. R. Mizoguchi, S. S. Kano, and A. Wada, Chem. Phys. Lett. 379, 319 (2003).
    [CrossRef]
  3. A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995).
    [CrossRef]
  4. T. Konishi, Y. Oshita, W. Yu, H. Furukawa, K. Itoh, and Y. Ichioka, IEEE Photon. Technol. Lett. 16, 620 (2004).
    [CrossRef]
  5. H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, J. Lightwave Technol. 26, 670 (2008).
    [CrossRef]
  6. D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, IEEE Photon. Technol. Lett. 18, 721 (2006).
    [CrossRef]
  7. N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and J. B. Yoo, Nature Photon. 4, 248 (2010).
    [CrossRef]
  8. D. J. Geisler, N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, IEEE Photon. J. 3, 1013 (2011).
    [CrossRef]
  9. Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, IEEE Photon. Technol. Lett. 21, 39 (2009).
    [CrossRef]
  10. T. Shioda and T. Yamazaki, Opt. Commun. 283, 4733 (2010).
    [CrossRef]
  11. T. Yamazaki and T. Shioda, J. Opt. Soc. Am. B 29, 1707 (2012).
    [CrossRef]
  12. F. Ferdous, D. E. Leaird, C.-B. Huang, and A. M. Weiner, Opt. Lett. 34, 3875 (2009).
    [CrossRef]
  13. T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, IEEE J. Lightwave Technol. 16, 824 (1998).
    [CrossRef]

2012

2011

D. J. Geisler, N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, IEEE Photon. J. 3, 1013 (2011).
[CrossRef]

2010

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and J. B. Yoo, Nature Photon. 4, 248 (2010).
[CrossRef]

T. Shioda and T. Yamazaki, Opt. Commun. 283, 4733 (2010).
[CrossRef]

2009

F. Ferdous, D. E. Leaird, C.-B. Huang, and A. M. Weiner, Opt. Lett. 34, 3875 (2009).
[CrossRef]

Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, IEEE Photon. Technol. Lett. 21, 39 (2009).
[CrossRef]

2008

2006

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, IEEE Photon. Technol. Lett. 18, 721 (2006).
[CrossRef]

2004

T. Konishi, Y. Oshita, W. Yu, H. Furukawa, K. Itoh, and Y. Ichioka, IEEE Photon. Technol. Lett. 16, 620 (2004).
[CrossRef]

2003

R. Mizoguchi, S. S. Kano, and A. Wada, Chem. Phys. Lett. 379, 319 (2003).
[CrossRef]

1998

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, IEEE J. Lightwave Technol. 16, 824 (1998).
[CrossRef]

1995

A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995).
[CrossRef]

Ferdous, F.

Fontaine, N. K.

D. J. Geisler, N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, IEEE Photon. J. 3, 1013 (2011).
[CrossRef]

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and J. B. Yoo, Nature Photon. 4, 248 (2010).
[CrossRef]

Furukawa, H.

T. Konishi, Y. Oshita, W. Yu, H. Furukawa, K. Itoh, and Y. Ichioka, IEEE Photon. Technol. Lett. 16, 620 (2004).
[CrossRef]

Geisler, D. J.

D. J. Geisler, N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, IEEE Photon. J. 3, 1013 (2011).
[CrossRef]

Guan, P.

P. Guan, H. C. H. Mulvad, Y. Tomiyama, T. Hirano, T. Hirooka, and M. Nakazawa, in Proceedings of ECOC 2010.

Heritage, J. P.

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and J. B. Yoo, Nature Photon. 4, 248 (2010).
[CrossRef]

Hirano, T.

P. Guan, H. C. H. Mulvad, Y. Tomiyama, T. Hirano, T. Hirooka, and M. Nakazawa, in Proceedings of ECOC 2010.

Hirooka, T.

P. Guan, H. C. H. Mulvad, Y. Tomiyama, T. Hirano, T. Hirooka, and M. Nakazawa, in Proceedings of ECOC 2010.

Huang, C.-B.

Ichioka, Y.

T. Konishi, Y. Oshita, W. Yu, H. Furukawa, K. Itoh, and Y. Ichioka, IEEE Photon. Technol. Lett. 16, 620 (2004).
[CrossRef]

Itoh, K.

T. Konishi, Y. Oshita, W. Yu, H. Furukawa, K. Itoh, and Y. Ichioka, IEEE Photon. Technol. Lett. 16, 620 (2004).
[CrossRef]

Kano, S. S.

R. Mizoguchi, S. S. Kano, and A. Wada, Chem. Phys. Lett. 379, 319 (2003).
[CrossRef]

Kinugawa, S.

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, IEEE J. Lightwave Technol. 16, 824 (1998).
[CrossRef]

Kobe, R.

Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, IEEE Photon. Technol. Lett. 21, 39 (2009).
[CrossRef]

Konishi, T.

T. Konishi, Y. Oshita, W. Yu, H. Furukawa, K. Itoh, and Y. Ichioka, IEEE Photon. Technol. Lett. 16, 620 (2004).
[CrossRef]

Kourogi, M.

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, IEEE J. Lightwave Technol. 16, 824 (1998).
[CrossRef]

Kurokawa, T.

Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, IEEE Photon. Technol. Lett. 21, 39 (2009).
[CrossRef]

H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, J. Lightwave Technol. 26, 670 (2008).
[CrossRef]

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, IEEE Photon. Technol. Lett. 18, 721 (2006).
[CrossRef]

Leaird, D. E.

Mandai, K.

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, IEEE Photon. Technol. Lett. 18, 721 (2006).
[CrossRef]

Mattori, S.

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, IEEE J. Lightwave Technol. 16, 824 (1998).
[CrossRef]

Miyagi, K.

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, IEEE J. Lightwave Technol. 16, 824 (1998).
[CrossRef]

Miyamoto, D.

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, IEEE Photon. Technol. Lett. 18, 721 (2006).
[CrossRef]

Mizoguchi, R.

R. Mizoguchi, S. S. Kano, and A. Wada, Chem. Phys. Lett. 379, 319 (2003).
[CrossRef]

Mulvad, H. C. H.

P. Guan, H. C. H. Mulvad, Y. Tomiyama, T. Hirano, T. Hirooka, and M. Nakazawa, in Proceedings of ECOC 2010.

Nakazawa, M.

P. Guan, H. C. H. Mulvad, Y. Tomiyama, T. Hirano, T. Hirooka, and M. Nakazawa, in Proceedings of ECOC 2010.

Ohtsu, M.

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, IEEE J. Lightwave Technol. 16, 824 (1998).
[CrossRef]

Oshita, Y.

T. Konishi, Y. Oshita, W. Yu, H. Furukawa, K. Itoh, and Y. Ichioka, IEEE Photon. Technol. Lett. 16, 620 (2004).
[CrossRef]

Saitoh, T.

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, IEEE J. Lightwave Technol. 16, 824 (1998).
[CrossRef]

Scott, R. P.

D. J. Geisler, N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, IEEE Photon. J. 3, 1013 (2011).
[CrossRef]

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and J. B. Yoo, Nature Photon. 4, 248 (2010).
[CrossRef]

Shioda, T.

T. Yamazaki and T. Shioda, J. Opt. Soc. Am. B 29, 1707 (2012).
[CrossRef]

T. Shioda and T. Yamazaki, Opt. Commun. 283, 4733 (2010).
[CrossRef]

Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, IEEE Photon. Technol. Lett. 21, 39 (2009).
[CrossRef]

H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, J. Lightwave Technol. 26, 670 (2008).
[CrossRef]

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, IEEE Photon. Technol. Lett. 18, 721 (2006).
[CrossRef]

Soares, F. M.

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and J. B. Yoo, Nature Photon. 4, 248 (2010).
[CrossRef]

Takeda, S.

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, IEEE Photon. Technol. Lett. 18, 721 (2006).
[CrossRef]

Tanaka, Y.

Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, IEEE Photon. Technol. Lett. 21, 39 (2009).
[CrossRef]

H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, J. Lightwave Technol. 26, 670 (2008).
[CrossRef]

Taniguchi, A.

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, IEEE J. Lightwave Technol. 16, 824 (1998).
[CrossRef]

Tomiyama, Y.

P. Guan, H. C. H. Mulvad, Y. Tomiyama, T. Hirano, T. Hirooka, and M. Nakazawa, in Proceedings of ECOC 2010.

Tsuda, H.

Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, IEEE Photon. Technol. Lett. 21, 39 (2009).
[CrossRef]

H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, J. Lightwave Technol. 26, 670 (2008).
[CrossRef]

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, IEEE Photon. Technol. Lett. 18, 721 (2006).
[CrossRef]

Wada, A.

R. Mizoguchi, S. S. Kano, and A. Wada, Chem. Phys. Lett. 379, 319 (2003).
[CrossRef]

Weiner, A. M.

Yamazaki, T.

T. Yamazaki and T. Shioda, J. Opt. Soc. Am. B 29, 1707 (2012).
[CrossRef]

T. Shioda and T. Yamazaki, Opt. Commun. 283, 4733 (2010).
[CrossRef]

Yoo, J. B.

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and J. B. Yoo, Nature Photon. 4, 248 (2010).
[CrossRef]

Yoo, S. J. B.

D. J. Geisler, N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, IEEE Photon. J. 3, 1013 (2011).
[CrossRef]

Yu, W.

T. Konishi, Y. Oshita, W. Yu, H. Furukawa, K. Itoh, and Y. Ichioka, IEEE Photon. Technol. Lett. 16, 620 (2004).
[CrossRef]

Zhou, L.

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and J. B. Yoo, Nature Photon. 4, 248 (2010).
[CrossRef]

Chem. Phys. Lett.

R. Mizoguchi, S. S. Kano, and A. Wada, Chem. Phys. Lett. 379, 319 (2003).
[CrossRef]

IEEE J. Lightwave Technol.

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, IEEE J. Lightwave Technol. 16, 824 (1998).
[CrossRef]

IEEE Photon. J.

D. J. Geisler, N. K. Fontaine, R. P. Scott, and S. J. B. Yoo, IEEE Photon. J. 3, 1013 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, IEEE Photon. Technol. Lett. 21, 39 (2009).
[CrossRef]

D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, IEEE Photon. Technol. Lett. 18, 721 (2006).
[CrossRef]

T. Konishi, Y. Oshita, W. Yu, H. Furukawa, K. Itoh, and Y. Ichioka, IEEE Photon. Technol. Lett. 16, 620 (2004).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nature Photon.

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and J. B. Yoo, Nature Photon. 4, 248 (2010).
[CrossRef]

Opt. Commun.

T. Shioda and T. Yamazaki, Opt. Commun. 283, 4733 (2010).
[CrossRef]

Opt. Lett.

Prog. Quantum Electron.

A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995).
[CrossRef]

Other

P. Guan, H. C. H. Mulvad, Y. Tomiyama, T. Hirano, T. Hirooka, and M. Nakazawa, in Proceedings of ECOC 2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Operating principle of the ultrafast optical frequency comb analyzer. The spectra of relative phase and amplitude can be measured in parallel.

Fig. 2.
Fig. 2.

Experimental setup of the ultrafast optical frequency comb synthesizer (UOFCS) and analyzer (UOFCA).

Fig. 3.
Fig. 3.

Schematic of 400 GHz OFC generation using a colorless 25 GHz AWG with a 400 GHz free spectral range.

Fig. 4.
Fig. 4.

Fourier transformed relative phase spectrum (open circles) and experimentally observed spectrum (closed circles). Vertical axis corresponds to relative phase difference from the center frequency.

Fig. 5.
Fig. 5.

Fourier transformed relative amplitude spectrum (open circles) and experimentally observed spectrum (closed circles).

Fig. 6.
Fig. 6.

2Tbit/s (4bit) packets obtained from the measured phase and amplitude spectra. The measured packet patterns (a) “1000,” (b) “1110,” (c) “1010,” and (d) “1100” are shown as filled waveforms. Solid lines correspond to numerically obtained waveforms.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Vi(t,ϕ,L)=αicos{2πδft+(ϕiϕr)+2πnc(fiLsfriLr)},
Vi+1(t,ϕ,L)=αi+1cos{2πδft+(ϕi+1ϕr)+2πnc(fi+1Lsfr(i+1)Lr)},
VDC(ϕ,L)=Bias.+βcos(Δϕ+2πnΔfcΔL),

Metrics