Abstract

The light absorption coefficient of hydrogenated nanocrystalline silicon has been engineered to have a Gaussian distribution by means of absorption modification using a femtosecond laser. The absorption-modified sample exhibits a significant absorption enhancement of up to 700%, and the strong absorption does not depend on the incident light. We propose a model responsible for this interesting behavior. In addition, we present an optical limiter constructed through this absorption engineering method.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Sameshima, S. Usui, and M. Sekiya, IEEE Electron Device Lett. 7, 276 (1986).
    [CrossRef]
  2. S. Brotherton, D. McCulloch, J. Clegg, and J. Gowers, IEEE Trans. Electron Devices 40, 407 (1993).
    [CrossRef]
  3. T. Pier, K. Kandoussi, C. Simon, N. Coulon, H. Lhermite, T. Mohammed-Brahim, and J.-F. Bergamini, Thin Solid Films 515, 7585 (2007).
    [CrossRef]
  4. A. Adikaari, N. Mudugamuwa, and S. Silva, Sol. Energy Mater. Sol. Cells 92, 634 (2008).
    [CrossRef]
  5. H. Mavi, A. Shukla, S. Abbi, and K. Jain, J. Appl. Phys. 66, 5322 (1989).
    [CrossRef]
  6. D. Von der Linde, and N. Fabricius, Appl. Phys. Lett. 41, 991 (1982).
    [CrossRef]
  7. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, Appl. Phys. A 74, 19 (2002).
    [CrossRef]
  8. Y. J. Ma, J. I. Oh, D. Q. Zheng, W. A. Su, and W. Z. Shen, Opt. Lett. 36, 3431 (2011).
    [CrossRef]
  9. L. Xu, Z. P. Li, C. Wen, and W. Z. Shen, J. Appl. Phys. 110, 064315 (2011).
    [CrossRef]
  10. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
    [CrossRef]
  11. E. Bustarret, M. Hachicha, and M. Brunel, Appl. Phys. Lett. 52, 1675 (1988).
    [CrossRef]
  12. Z. Yuan, Q. Lou, J. Zhou, J. Dong, Y. Wei, Z. Wang, H. Zhao, and G. Wu, Opt. Laser Technol. 41, 380 (2009).
    [CrossRef]
  13. P. Thomas, A. Jares, and B. Stoicheff, IEEE J. Quantum Electron. 10, 493 (1974).
    [CrossRef]

2011

L. Xu, Z. P. Li, C. Wen, and W. Z. Shen, J. Appl. Phys. 110, 064315 (2011).
[CrossRef]

Y. J. Ma, J. I. Oh, D. Q. Zheng, W. A. Su, and W. Z. Shen, Opt. Lett. 36, 3431 (2011).
[CrossRef]

2009

Z. Yuan, Q. Lou, J. Zhou, J. Dong, Y. Wei, Z. Wang, H. Zhao, and G. Wu, Opt. Laser Technol. 41, 380 (2009).
[CrossRef]

2008

A. Adikaari, N. Mudugamuwa, and S. Silva, Sol. Energy Mater. Sol. Cells 92, 634 (2008).
[CrossRef]

2007

T. Pier, K. Kandoussi, C. Simon, N. Coulon, H. Lhermite, T. Mohammed-Brahim, and J.-F. Bergamini, Thin Solid Films 515, 7585 (2007).
[CrossRef]

2002

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, Appl. Phys. A 74, 19 (2002).
[CrossRef]

1993

S. Brotherton, D. McCulloch, J. Clegg, and J. Gowers, IEEE Trans. Electron Devices 40, 407 (1993).
[CrossRef]

1990

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

1989

H. Mavi, A. Shukla, S. Abbi, and K. Jain, J. Appl. Phys. 66, 5322 (1989).
[CrossRef]

1988

E. Bustarret, M. Hachicha, and M. Brunel, Appl. Phys. Lett. 52, 1675 (1988).
[CrossRef]

1986

T. Sameshima, S. Usui, and M. Sekiya, IEEE Electron Device Lett. 7, 276 (1986).
[CrossRef]

1982

D. Von der Linde, and N. Fabricius, Appl. Phys. Lett. 41, 991 (1982).
[CrossRef]

1974

P. Thomas, A. Jares, and B. Stoicheff, IEEE J. Quantum Electron. 10, 493 (1974).
[CrossRef]

Abbi, S.

H. Mavi, A. Shukla, S. Abbi, and K. Jain, J. Appl. Phys. 66, 5322 (1989).
[CrossRef]

Adikaari, A.

A. Adikaari, N. Mudugamuwa, and S. Silva, Sol. Energy Mater. Sol. Cells 92, 634 (2008).
[CrossRef]

Baudach, S.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, Appl. Phys. A 74, 19 (2002).
[CrossRef]

Bergamini, J.-F.

T. Pier, K. Kandoussi, C. Simon, N. Coulon, H. Lhermite, T. Mohammed-Brahim, and J.-F. Bergamini, Thin Solid Films 515, 7585 (2007).
[CrossRef]

Bonse, J.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, Appl. Phys. A 74, 19 (2002).
[CrossRef]

Brotherton, S.

S. Brotherton, D. McCulloch, J. Clegg, and J. Gowers, IEEE Trans. Electron Devices 40, 407 (1993).
[CrossRef]

Brunel, M.

E. Bustarret, M. Hachicha, and M. Brunel, Appl. Phys. Lett. 52, 1675 (1988).
[CrossRef]

Bustarret, E.

E. Bustarret, M. Hachicha, and M. Brunel, Appl. Phys. Lett. 52, 1675 (1988).
[CrossRef]

Clegg, J.

S. Brotherton, D. McCulloch, J. Clegg, and J. Gowers, IEEE Trans. Electron Devices 40, 407 (1993).
[CrossRef]

Coulon, N.

T. Pier, K. Kandoussi, C. Simon, N. Coulon, H. Lhermite, T. Mohammed-Brahim, and J.-F. Bergamini, Thin Solid Films 515, 7585 (2007).
[CrossRef]

Dong, J.

Z. Yuan, Q. Lou, J. Zhou, J. Dong, Y. Wei, Z. Wang, H. Zhao, and G. Wu, Opt. Laser Technol. 41, 380 (2009).
[CrossRef]

Fabricius, N.

D. Von der Linde, and N. Fabricius, Appl. Phys. Lett. 41, 991 (1982).
[CrossRef]

Gowers, J.

S. Brotherton, D. McCulloch, J. Clegg, and J. Gowers, IEEE Trans. Electron Devices 40, 407 (1993).
[CrossRef]

Hachicha, M.

E. Bustarret, M. Hachicha, and M. Brunel, Appl. Phys. Lett. 52, 1675 (1988).
[CrossRef]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Jain, K.

H. Mavi, A. Shukla, S. Abbi, and K. Jain, J. Appl. Phys. 66, 5322 (1989).
[CrossRef]

Jares, A.

P. Thomas, A. Jares, and B. Stoicheff, IEEE J. Quantum Electron. 10, 493 (1974).
[CrossRef]

Kandoussi, K.

T. Pier, K. Kandoussi, C. Simon, N. Coulon, H. Lhermite, T. Mohammed-Brahim, and J.-F. Bergamini, Thin Solid Films 515, 7585 (2007).
[CrossRef]

Kautek, W.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, Appl. Phys. A 74, 19 (2002).
[CrossRef]

Krüger, J.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, Appl. Phys. A 74, 19 (2002).
[CrossRef]

Lenzner, M.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, Appl. Phys. A 74, 19 (2002).
[CrossRef]

Lhermite, H.

T. Pier, K. Kandoussi, C. Simon, N. Coulon, H. Lhermite, T. Mohammed-Brahim, and J.-F. Bergamini, Thin Solid Films 515, 7585 (2007).
[CrossRef]

Li, Z. P.

L. Xu, Z. P. Li, C. Wen, and W. Z. Shen, J. Appl. Phys. 110, 064315 (2011).
[CrossRef]

Lou, Q.

Z. Yuan, Q. Lou, J. Zhou, J. Dong, Y. Wei, Z. Wang, H. Zhao, and G. Wu, Opt. Laser Technol. 41, 380 (2009).
[CrossRef]

Ma, Y. J.

Mavi, H.

H. Mavi, A. Shukla, S. Abbi, and K. Jain, J. Appl. Phys. 66, 5322 (1989).
[CrossRef]

McCulloch, D.

S. Brotherton, D. McCulloch, J. Clegg, and J. Gowers, IEEE Trans. Electron Devices 40, 407 (1993).
[CrossRef]

Mohammed-Brahim, T.

T. Pier, K. Kandoussi, C. Simon, N. Coulon, H. Lhermite, T. Mohammed-Brahim, and J.-F. Bergamini, Thin Solid Films 515, 7585 (2007).
[CrossRef]

Mudugamuwa, N.

A. Adikaari, N. Mudugamuwa, and S. Silva, Sol. Energy Mater. Sol. Cells 92, 634 (2008).
[CrossRef]

Oh, J. I.

Pier, T.

T. Pier, K. Kandoussi, C. Simon, N. Coulon, H. Lhermite, T. Mohammed-Brahim, and J.-F. Bergamini, Thin Solid Films 515, 7585 (2007).
[CrossRef]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Sameshima, T.

T. Sameshima, S. Usui, and M. Sekiya, IEEE Electron Device Lett. 7, 276 (1986).
[CrossRef]

Sekiya, M.

T. Sameshima, S. Usui, and M. Sekiya, IEEE Electron Device Lett. 7, 276 (1986).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Shen, W. Z.

L. Xu, Z. P. Li, C. Wen, and W. Z. Shen, J. Appl. Phys. 110, 064315 (2011).
[CrossRef]

Y. J. Ma, J. I. Oh, D. Q. Zheng, W. A. Su, and W. Z. Shen, Opt. Lett. 36, 3431 (2011).
[CrossRef]

Shukla, A.

H. Mavi, A. Shukla, S. Abbi, and K. Jain, J. Appl. Phys. 66, 5322 (1989).
[CrossRef]

Silva, S.

A. Adikaari, N. Mudugamuwa, and S. Silva, Sol. Energy Mater. Sol. Cells 92, 634 (2008).
[CrossRef]

Simon, C.

T. Pier, K. Kandoussi, C. Simon, N. Coulon, H. Lhermite, T. Mohammed-Brahim, and J.-F. Bergamini, Thin Solid Films 515, 7585 (2007).
[CrossRef]

Stoicheff, B.

P. Thomas, A. Jares, and B. Stoicheff, IEEE J. Quantum Electron. 10, 493 (1974).
[CrossRef]

Su, W. A.

Thomas, P.

P. Thomas, A. Jares, and B. Stoicheff, IEEE J. Quantum Electron. 10, 493 (1974).
[CrossRef]

Usui, S.

T. Sameshima, S. Usui, and M. Sekiya, IEEE Electron Device Lett. 7, 276 (1986).
[CrossRef]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Von der Linde, D.

D. Von der Linde, and N. Fabricius, Appl. Phys. Lett. 41, 991 (1982).
[CrossRef]

Wang, Z.

Z. Yuan, Q. Lou, J. Zhou, J. Dong, Y. Wei, Z. Wang, H. Zhao, and G. Wu, Opt. Laser Technol. 41, 380 (2009).
[CrossRef]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

Wei, Y.

Z. Yuan, Q. Lou, J. Zhou, J. Dong, Y. Wei, Z. Wang, H. Zhao, and G. Wu, Opt. Laser Technol. 41, 380 (2009).
[CrossRef]

Wen, C.

L. Xu, Z. P. Li, C. Wen, and W. Z. Shen, J. Appl. Phys. 110, 064315 (2011).
[CrossRef]

Wu, G.

Z. Yuan, Q. Lou, J. Zhou, J. Dong, Y. Wei, Z. Wang, H. Zhao, and G. Wu, Opt. Laser Technol. 41, 380 (2009).
[CrossRef]

Xu, L.

L. Xu, Z. P. Li, C. Wen, and W. Z. Shen, J. Appl. Phys. 110, 064315 (2011).
[CrossRef]

Yuan, Z.

Z. Yuan, Q. Lou, J. Zhou, J. Dong, Y. Wei, Z. Wang, H. Zhao, and G. Wu, Opt. Laser Technol. 41, 380 (2009).
[CrossRef]

Zhao, H.

Z. Yuan, Q. Lou, J. Zhou, J. Dong, Y. Wei, Z. Wang, H. Zhao, and G. Wu, Opt. Laser Technol. 41, 380 (2009).
[CrossRef]

Zheng, D. Q.

Zhou, J.

Z. Yuan, Q. Lou, J. Zhou, J. Dong, Y. Wei, Z. Wang, H. Zhao, and G. Wu, Opt. Laser Technol. 41, 380 (2009).
[CrossRef]

Appl. Phys. A

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, Appl. Phys. A 74, 19 (2002).
[CrossRef]

Appl. Phys. Lett.

D. Von der Linde, and N. Fabricius, Appl. Phys. Lett. 41, 991 (1982).
[CrossRef]

E. Bustarret, M. Hachicha, and M. Brunel, Appl. Phys. Lett. 52, 1675 (1988).
[CrossRef]

IEEE Electron Device Lett.

T. Sameshima, S. Usui, and M. Sekiya, IEEE Electron Device Lett. 7, 276 (1986).
[CrossRef]

IEEE J. Quantum Electron.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).
[CrossRef]

P. Thomas, A. Jares, and B. Stoicheff, IEEE J. Quantum Electron. 10, 493 (1974).
[CrossRef]

IEEE Trans. Electron Devices

S. Brotherton, D. McCulloch, J. Clegg, and J. Gowers, IEEE Trans. Electron Devices 40, 407 (1993).
[CrossRef]

J. Appl. Phys.

H. Mavi, A. Shukla, S. Abbi, and K. Jain, J. Appl. Phys. 66, 5322 (1989).
[CrossRef]

L. Xu, Z. P. Li, C. Wen, and W. Z. Shen, J. Appl. Phys. 110, 064315 (2011).
[CrossRef]

Opt. Laser Technol.

Z. Yuan, Q. Lou, J. Zhou, J. Dong, Y. Wei, Z. Wang, H. Zhao, and G. Wu, Opt. Laser Technol. 41, 380 (2009).
[CrossRef]

Opt. Lett.

Sol. Energy Mater. Sol. Cells

A. Adikaari, N. Mudugamuwa, and S. Silva, Sol. Energy Mater. Sol. Cells 92, 634 (2008).
[CrossRef]

Thin Solid Films

T. Pier, K. Kandoussi, C. Simon, N. Coulon, H. Lhermite, T. Mohammed-Brahim, and J.-F. Bergamini, Thin Solid Films 515, 7585 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 2.
Fig. 2.

(a) Optical microscope image after the absorption modification; (b) two-dimensional Xc distribution; (c) Xc versus EnEL; the line is to guide the eye; (d) wavelength-dependent absorption coefficients for the as-prepared and crystallized nc-Si:H samples; (e) logarithmic absorption coefficient versus Xc at λ=800nm; the solid line is a linear fit; (f) absorption coefficient of the absorption-modified spot along the dashed line in (b), deduced from (e); the solid line is a Gaussian fit.

Fig. 1.
Fig. 1.

I0-dependent OA Z-scan curves at λ=800nm. (a) Evolution of an absorption modification and (b) NLA behavior after the absorption modification; and λ-dependent (c) OA Z-scan curves at I0=2.87GW/cm2 and (d) absorption parameters, (r0, α0) and (R0, A0).

Fig. 3.
Fig. 3.

(a) Transmittance of an optical unit as a function of power of an incident laser beam at λ=800nm, demonstrating optical limiting behavior; the inset shows a schematic drawing of the experimental setup; (b) OA and CA Z-scan curves of CS2 at λ=800nm and I0=5.97GW/cm2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

α(r)=αa+α0exp(2r2r02),
dIdz=αI=[αa+A0exp(2r2R02)+α(I)]I,
T(z)=+dt0+IoutrdreαaL+dt0+Iinrdr=4wz20e(2r2/wz2)A0exp(2r2/R02)Lrdr,

Metrics