Abstract

This Letter presents a polarimetric study of the emission of random lasers from organic dyes. Coherent lasing modes from samples with ethanol solvent showed a high degree of polarization and did not influence each other in polarization. The proper choice of a laser dye with asymmetric absorption momenta, a highly viscous solvent, and a linear pump polarization can cause the random lasing emission to be completely linearly polarized for all wavelengths within the amplification range.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. S. Lethokov, Sov. Phys. JETP 26, 835 (1968).
  2. K. Van Der Molen, A. Mosk, and A. Lagendijk, Opt. Commun. 278, 110 (2007).
    [CrossRef]
  3. D. Wiersma, Nature Phys. 4, 359 (2008).
    [CrossRef]
  4. S. Knitter, T. Hellwig, M. Kues, and C. Fallnich, Opt. Lett. 36, 3048 (2011).
    [CrossRef]
  5. N. Andermahr and C. Fallnich, Opt. Express 16, 8678 (2008).
    [CrossRef]
  6. F. P. Schäfer, Dye Lasers, 3rd ed. (Springer, 1990).
  7. A. Penzkofer and W. Falkenstein, Opt. Quantum Electron. 10, 399 (1978).
    [CrossRef]
  8. W. L. Sha, C.-H. Liu, and R. R. Alfano, Opt. Lett. 19, 1922 (1994).
    [CrossRef]
  9. L. A. Philips, S. P. Webb, S. W. Yeh, and J. H. Clark, J. Phys. Chem. 89, 17 (1985).
    [CrossRef]
  10. S. Popov, Appl. Opt. 37, 6449 (1998).
    [CrossRef]

2011

2008

2007

K. Van Der Molen, A. Mosk, and A. Lagendijk, Opt. Commun. 278, 110 (2007).
[CrossRef]

1998

1994

1985

L. A. Philips, S. P. Webb, S. W. Yeh, and J. H. Clark, J. Phys. Chem. 89, 17 (1985).
[CrossRef]

1978

A. Penzkofer and W. Falkenstein, Opt. Quantum Electron. 10, 399 (1978).
[CrossRef]

1968

V. S. Lethokov, Sov. Phys. JETP 26, 835 (1968).

Alfano, R. R.

Andermahr, N.

Clark, J. H.

L. A. Philips, S. P. Webb, S. W. Yeh, and J. H. Clark, J. Phys. Chem. 89, 17 (1985).
[CrossRef]

Falkenstein, W.

A. Penzkofer and W. Falkenstein, Opt. Quantum Electron. 10, 399 (1978).
[CrossRef]

Fallnich, C.

Hellwig, T.

Knitter, S.

Kues, M.

Lagendijk, A.

K. Van Der Molen, A. Mosk, and A. Lagendijk, Opt. Commun. 278, 110 (2007).
[CrossRef]

Lethokov, V. S.

V. S. Lethokov, Sov. Phys. JETP 26, 835 (1968).

Liu, C.-H.

Mosk, A.

K. Van Der Molen, A. Mosk, and A. Lagendijk, Opt. Commun. 278, 110 (2007).
[CrossRef]

Penzkofer, A.

A. Penzkofer and W. Falkenstein, Opt. Quantum Electron. 10, 399 (1978).
[CrossRef]

Philips, L. A.

L. A. Philips, S. P. Webb, S. W. Yeh, and J. H. Clark, J. Phys. Chem. 89, 17 (1985).
[CrossRef]

Popov, S.

Schäfer, F. P.

F. P. Schäfer, Dye Lasers, 3rd ed. (Springer, 1990).

Sha, W. L.

Van Der Molen, K.

K. Van Der Molen, A. Mosk, and A. Lagendijk, Opt. Commun. 278, 110 (2007).
[CrossRef]

Webb, S. P.

L. A. Philips, S. P. Webb, S. W. Yeh, and J. H. Clark, J. Phys. Chem. 89, 17 (1985).
[CrossRef]

Wiersma, D.

D. Wiersma, Nature Phys. 4, 359 (2008).
[CrossRef]

Yeh, S. W.

L. A. Philips, S. P. Webb, S. W. Yeh, and J. H. Clark, J. Phys. Chem. 89, 17 (1985).
[CrossRef]

Appl. Opt.

J. Phys. Chem.

L. A. Philips, S. P. Webb, S. W. Yeh, and J. H. Clark, J. Phys. Chem. 89, 17 (1985).
[CrossRef]

Nature Phys.

D. Wiersma, Nature Phys. 4, 359 (2008).
[CrossRef]

Opt. Commun.

K. Van Der Molen, A. Mosk, and A. Lagendijk, Opt. Commun. 278, 110 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

A. Penzkofer and W. Falkenstein, Opt. Quantum Electron. 10, 399 (1978).
[CrossRef]

Sov. Phys. JETP

V. S. Lethokov, Sov. Phys. JETP 26, 835 (1968).

Other

F. P. Schäfer, Dye Lasers, 3rd ed. (Springer, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup—λ/4, λ/2: quarter-wave/half-wave plate; PBS: polarizer; M: mirror; BS: beam splitter; L: lens; S: sample contained in glass-cuvette; SP: spectropolarimeter; HL: halogen lamp. The components in the dotted region were used for the calibration of the SP only [4].

Fig. 2.
Fig. 2.

Distribution of the DoP for Coherent RL (filled) and fluorescent emission (no filling) of Rhodamine6G in ethanol. The average DoP of RL modes was elevated at 0.70±0.25. The large spread in the coherent case is partly due to the accumulated random error of the parameters S0 to S3, which all are arguments of DoP.

Fig. 3.
Fig. 3.

RL modes from sample CRL-Eth projected on the PS. Modes are: (a) confined on one hemisphere of the PS under linear and (b) uniformly spread under circular PP (view in the (S2)-direction). Red squares indicate the PP.

Fig. 4.
Fig. 4.

Distribution of great circle RL peak distances on the PS. The solid line indicates the theoretical distribution, as expected, for distances of completely independent points on the PS. RL modes within one emission spectrum did not influence each other significantly in polarization.

Fig. 5.
Fig. 5.

Polarization of RL modes in a glycerol solvent projected on the PS: (a) under linear and (b) under circular PP (view in S1-direction). Under linearly polarized pumping the spread of the modes from sample CRL-Gly is less than 10 deg, thus much smaller compared to CRL-Eth [Fig. 3(a)]. Red squares indicate the PP.

Metrics