Abstract

Soliton self-frequency shift (SSFS) in a photonic crystal fiber (PCF) pumped by a long-cavity mode-locked Cr:forsterite laser is integrated with second harmonic generation (SHG) in a nonlinear crystal to generate ultrashort light pulses tunable within the range of wavelengths from 680 to 1800 nm at a repetition rate of 20 MHz. The pulse width of the second harmonic output is tuned from 70 to 600 fs by varying the thickness of the nonlinear crystal, beam-focusing geometry, and the wavelength of the soliton PCF output. Wavelength-tunable pulses generated through a combination of SSFS and SHG are ideally suited for coherent Raman microspectroscopy at high repetition rates, as verified by experiments on synthetic diamond and polystyrene films.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, Science 299, 358 (2003).
    [CrossRef]
  2. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
    [CrossRef]
  3. A. M. Zheltikov, Phys. Uspekhi 47, 69 (2004).
    [CrossRef]
  4. Th. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
    [CrossRef]
  5. P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).
    [CrossRef]
  6. C. Y. Teisset, N. Ishii, T. Fuji, T. Metzger, S. Köhler, R. Holzwarth, A. Baltuška, A. M. Zheltikov, and F. Krausz, Opt. Express 13, 6550 (2005).
    [CrossRef]
  7. E. R. Andresen, V. Birkedal, J. Thøgersen, and S. R. Keiding, Opt. Lett. 31, 1328 (2006).
    [CrossRef]
  8. D. A. Sidorov-Biryukov, E. E. Serebryannikov, and A. M. Zheltikov, Opt. Lett. 31, 2323 (2006).
    [CrossRef]
  9. K. Deisseroth, Nat. Methods 8, 26 (2011).
    [CrossRef]
  10. L. V. Doronina, I. V. Fedotov, A. A. Voronin, O. I. Ivashkina, M. A. Zots, K. V. Anokhin, E. Rostova, A. B. Fedotov, and A. M. Zheltikov, Opt. Lett. 34, 3373 (2009).
    [CrossRef]
  11. H. Liu, M. Hu, B. Liu, Y. Song, L. Chai, A. M. Zheltikov, and C. Wang, J. Opt. Soc. Am. B 27, 2284 (2010).
    [CrossRef]
  12. F. Liu, Y. Song, Q. Xing, M. Hu, Y. Li, C. Wang, L. Chai, W. Zhang, A. M. Zheltikov, and C. Wang, IEEE Photon. Technol. Lett. 22, 814 (2010).
    [CrossRef]
  13. A. B. Fedotov, A. A. Voronin, I. V. Fedotov, A. A. Ivanov, and A. M. Zheltikov, Opt. Lett. 34, 851 (2009).
    [CrossRef]
  14. K. Moutzouris, F. Adler, F. Sotier, D. Träutlein, and A. Leitenstorfer, Opt. Lett. 31, 1148 (2006).
    [CrossRef]
  15. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett. 25, 1415 (2000).
    [CrossRef]
  16. S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, J. Exp. Theor. Phys. 28, 748 (1969).
  17. M. Marangoni, A. Gambetta, C. Manzoni, V. Kumar, R. Ramponi, and G. Cerullo, Opt. Lett. 34, 3262 (2009).
    [CrossRef]
  18. M. D. Levenson, C. Flytzanis, and N. Bloembergen, Phys. Rev. B 6, 3962 (1972).
    [CrossRef]
  19. A. A. Lanin, A. B. Fedotov, and A. M. Zheltikov, Opt. Lett. 37, 1508 (2012).
    [CrossRef]

2012 (1)

2011 (1)

K. Deisseroth, Nat. Methods 8, 26 (2011).
[CrossRef]

2010 (2)

H. Liu, M. Hu, B. Liu, Y. Song, L. Chai, A. M. Zheltikov, and C. Wang, J. Opt. Soc. Am. B 27, 2284 (2010).
[CrossRef]

F. Liu, Y. Song, Q. Xing, M. Hu, Y. Li, C. Wang, L. Chai, W. Zhang, A. M. Zheltikov, and C. Wang, IEEE Photon. Technol. Lett. 22, 814 (2010).
[CrossRef]

2009 (3)

2007 (1)

P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).
[CrossRef]

2006 (4)

2005 (1)

2004 (1)

A. M. Zheltikov, Phys. Uspekhi 47, 69 (2004).
[CrossRef]

2003 (1)

P. St. J. Russell, Science 299, 358 (2003).
[CrossRef]

2002 (1)

Th. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef]

2000 (1)

1972 (1)

M. D. Levenson, C. Flytzanis, and N. Bloembergen, Phys. Rev. B 6, 3962 (1972).
[CrossRef]

1969 (1)

S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, J. Exp. Theor. Phys. 28, 748 (1969).

Adler, F.

Akhmanov, S. A.

S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, J. Exp. Theor. Phys. 28, 748 (1969).

Andresen, E. R.

Anokhin, K. V.

Baltuška, A.

Birkedal, V.

Birks, T. A.

Bloembergen, N.

M. D. Levenson, C. Flytzanis, and N. Bloembergen, Phys. Rev. B 6, 3962 (1972).
[CrossRef]

Cerullo, G.

Chai, L.

H. Liu, M. Hu, B. Liu, Y. Song, L. Chai, A. M. Zheltikov, and C. Wang, J. Opt. Soc. Am. B 27, 2284 (2010).
[CrossRef]

F. Liu, Y. Song, Q. Xing, M. Hu, Y. Li, C. Wang, L. Chai, W. Zhang, A. M. Zheltikov, and C. Wang, IEEE Photon. Technol. Lett. 22, 814 (2010).
[CrossRef]

Chirkin, A. S.

S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, J. Exp. Theor. Phys. 28, 748 (1969).

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Corkum, P. B.

P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).
[CrossRef]

Deisseroth, K.

K. Deisseroth, Nat. Methods 8, 26 (2011).
[CrossRef]

Doronina, L. V.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Fedotov, A. B.

Fedotov, I. V.

Flytzanis, C.

M. D. Levenson, C. Flytzanis, and N. Bloembergen, Phys. Rev. B 6, 3962 (1972).
[CrossRef]

Fuji, T.

Gambetta, A.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Hänsch, T. W.

Th. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef]

Holzwarth, R.

Hu, M.

H. Liu, M. Hu, B. Liu, Y. Song, L. Chai, A. M. Zheltikov, and C. Wang, J. Opt. Soc. Am. B 27, 2284 (2010).
[CrossRef]

F. Liu, Y. Song, Q. Xing, M. Hu, Y. Li, C. Wang, L. Chai, W. Zhang, A. M. Zheltikov, and C. Wang, IEEE Photon. Technol. Lett. 22, 814 (2010).
[CrossRef]

Ishii, N.

Ivanov, A. A.

Ivashkina, O. I.

Keiding, S. R.

Köhler, S.

Krausz, F.

Kumar, V.

Lanin, A. A.

Leitenstorfer, A.

Levenson, M. D.

M. D. Levenson, C. Flytzanis, and N. Bloembergen, Phys. Rev. B 6, 3962 (1972).
[CrossRef]

Li, Y.

F. Liu, Y. Song, Q. Xing, M. Hu, Y. Li, C. Wang, L. Chai, W. Zhang, A. M. Zheltikov, and C. Wang, IEEE Photon. Technol. Lett. 22, 814 (2010).
[CrossRef]

Liu, B.

Liu, F.

F. Liu, Y. Song, Q. Xing, M. Hu, Y. Li, C. Wang, L. Chai, W. Zhang, A. M. Zheltikov, and C. Wang, IEEE Photon. Technol. Lett. 22, 814 (2010).
[CrossRef]

Liu, H.

Manzoni, C.

Marangoni, M.

Metzger, T.

Moutzouris, K.

Ramponi, R.

Rostova, E.

Russell, P. St. J.

Serebryannikov, E. E.

Sidorov-Biryukov, D. A.

Song, Y.

H. Liu, M. Hu, B. Liu, Y. Song, L. Chai, A. M. Zheltikov, and C. Wang, J. Opt. Soc. Am. B 27, 2284 (2010).
[CrossRef]

F. Liu, Y. Song, Q. Xing, M. Hu, Y. Li, C. Wang, L. Chai, W. Zhang, A. M. Zheltikov, and C. Wang, IEEE Photon. Technol. Lett. 22, 814 (2010).
[CrossRef]

Sotier, F.

Sukhorukov, A. P.

S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, J. Exp. Theor. Phys. 28, 748 (1969).

Teisset, C. Y.

Thøgersen, J.

Träutlein, D.

Udem, Th.

Th. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef]

Voronin, A. A.

Wadsworth, W. J.

Wang, C.

F. Liu, Y. Song, Q. Xing, M. Hu, Y. Li, C. Wang, L. Chai, W. Zhang, A. M. Zheltikov, and C. Wang, IEEE Photon. Technol. Lett. 22, 814 (2010).
[CrossRef]

F. Liu, Y. Song, Q. Xing, M. Hu, Y. Li, C. Wang, L. Chai, W. Zhang, A. M. Zheltikov, and C. Wang, IEEE Photon. Technol. Lett. 22, 814 (2010).
[CrossRef]

H. Liu, M. Hu, B. Liu, Y. Song, L. Chai, A. M. Zheltikov, and C. Wang, J. Opt. Soc. Am. B 27, 2284 (2010).
[CrossRef]

Xing, Q.

F. Liu, Y. Song, Q. Xing, M. Hu, Y. Li, C. Wang, L. Chai, W. Zhang, A. M. Zheltikov, and C. Wang, IEEE Photon. Technol. Lett. 22, 814 (2010).
[CrossRef]

Zhang, W.

F. Liu, Y. Song, Q. Xing, M. Hu, Y. Li, C. Wang, L. Chai, W. Zhang, A. M. Zheltikov, and C. Wang, IEEE Photon. Technol. Lett. 22, 814 (2010).
[CrossRef]

Zheltikov, A. M.

Zots, M. A.

IEEE Photon. Technol. Lett. (1)

F. Liu, Y. Song, Q. Xing, M. Hu, Y. Li, C. Wang, L. Chai, W. Zhang, A. M. Zheltikov, and C. Wang, IEEE Photon. Technol. Lett. 22, 814 (2010).
[CrossRef]

J. Exp. Theor. Phys. (1)

S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, J. Exp. Theor. Phys. 28, 748 (1969).

J. Opt. Soc. Am. B (1)

Nat. Methods (1)

K. Deisseroth, Nat. Methods 8, 26 (2011).
[CrossRef]

Nat. Phys. (1)

P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).
[CrossRef]

Nature (1)

Th. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (8)

Phys. Rev. B (1)

M. D. Levenson, C. Flytzanis, and N. Bloembergen, Phys. Rev. B 6, 3962 (1972).
[CrossRef]

Phys. Uspekhi (1)

A. M. Zheltikov, Phys. Uspekhi 47, 69 (2004).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Science (1)

P. St. J. Russell, Science 299, 358 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Spectrum of Cr:forsterite laser pulses (dashed line) and spectrum at the output of a 20 cm piece of PCF (shown in the inset) measured with an input energy of 5 nJ (solid line); (b) spectra of wavelength-shifted solitons at the output of a 20 cm piece of PCF measured with an input energy of 3.5 nJ (1), 4 nJ (2), 4.4 nJ (3), 4.9 nJ (4), 6.3 nJ (5), and 7.5 nJ (6).

Fig. 2.
Fig. 2.

Spectra of the second-harmonic output of (a) a 2 mm and (b) 20 mm thick LBO crystal pumped by wavelength-shifted solitons from a 20 cm long PCF. The dashed line in (b) shows the SHG phase-matching angle ϕ as a function of the soliton pump (the upper abscissa axis) and the second harmonic (the lower abscissa axis) wavelength for LBO. Diagram of the o+oe SHG process in an xz-cut LBO crystal is shown in the inset: P, pump field; SH, second harmonic; and ϕ, angle between the wave vector of the pump beam and the y axis in the xy plane.

Fig. 3.
Fig. 3.

(a) Pulse width of the second harmonic as a function of the pump (upper abscissa axis) and second harmonic (lower abscissa axis) wavelengths: results of experiments using an LBO crystal with L=2 mm (circles) and 20 mm (rectangles) versus calculations for L=2mm (dashed curve 1) and 20 mm (dashed curve 2); (b) autocorrelation traces of (1) the 700 nm and (2) 790 nm second harmonic output of (1) a 2 mm and (2) 20 mm thick LBO crystal pumped by wavelength-shifted solitons from a 20 cm long PCF.

Fig. 4.
Fig. 4.

CARS spectra of the 1332cm1 zone-center Γ(25+) (F2g) symmetry optical phonon in a synthetic diamond film. (a) The 2850cm1 CH vibrational mode of polystyrene and (b) experimental (dots) and theoretical (solid lines) fits assuming Lorentzian line profiles for the Raman lines. Diagrams of CARS arrangement are shown in the insets: Cr:F, Cr:forsterite laser; PPLN, periodically poled lithium niobate waveguide; PCF, photonic crystal fiber; DF, diamond film; PF, polymer film; AS, anti-Stokes signal; and Spec, spectrometer.

Metrics