Abstract

A simple, semi-analytical model of flowing gas diode pumped alkali lasers (DPALs) is presented. The model takes into account the rise of temperature in the lasing medium with increasing pump power, resulting in decreasing pump absorption and slope efficiency. The model predicts the dependence of power on the flow velocity in flowing gas DPALs and checks the effect of using a buffer gas with high molar heat capacity and large relaxation rate constant between the P3/22 and P1/22 fine-structure levels of the alkali atom. It is found that the power strongly increases with flow velocity and that by replacing, e.g., ethane by propane as a buffer gas the power may be further increased by up to 30%. Eight kilowatt is achievable for 20 kW pump at flow velocity of 20m/s.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. F. Krupke, J. Prog. Quantum Electron. 36, 4 (2012).
    [CrossRef]
  2. B. V. Zhdanov, J. Sell, and R. J. Knize, Electron. Lett. 44, 582 (2008).
    [CrossRef]
  3. J. Hecht, Laser Focus World 4, 49 (2011).
  4. A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 95 (2012).
    [CrossRef]
  5. G. D. Hager and G. P. Perram, Appl. Phys. B 101, 45 (2010).
  6. R. J. Knize, B. V. Zhdanov, and M. K. Shaffer, Opt. Express 19, 7894 (2011).
    [CrossRef]
  7. Z. Yang, H. Wang, Q. Lu, L. Liu, Y. Li, W. Hua, X. Xu, and J. Chen, J. Opt. Soc. Am. B 28, 1353 (2011).
    [CrossRef]
  8. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinski, and L. D. Merkle, J. Opt. Soc. Am. B 21, 2151 (2004).
    [CrossRef]
  9. G. A. Pitz, C. D. Fox, and G. P. Perram, Phys. Rev. A 84, 032708 (2011).
    [CrossRef]
  10. Available online at http://webbook.nist.gov .
  11. E. Walentynowicz, R. A. Phaneuf, and L. Krause, Can. J Phys. 52, 589 (1974).
  12. E. R. Van Artsdalen, J. Chem. Phys. 10, 653 (1942).
    [CrossRef]
  13. L. A. Gribov, I. A. Novakov, A. I. Pavlyuchko, and E. V. Vasil’ev, J. Struct. Chem. 47, 635 (2006).
    [CrossRef]

2012

W. F. Krupke, J. Prog. Quantum Electron. 36, 4 (2012).
[CrossRef]

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 95 (2012).
[CrossRef]

2011

2010

G. D. Hager and G. P. Perram, Appl. Phys. B 101, 45 (2010).

2008

B. V. Zhdanov, J. Sell, and R. J. Knize, Electron. Lett. 44, 582 (2008).
[CrossRef]

2006

L. A. Gribov, I. A. Novakov, A. I. Pavlyuchko, and E. V. Vasil’ev, J. Struct. Chem. 47, 635 (2006).
[CrossRef]

2004

1974

E. Walentynowicz, R. A. Phaneuf, and L. Krause, Can. J Phys. 52, 589 (1974).

1942

E. R. Van Artsdalen, J. Chem. Phys. 10, 653 (1942).
[CrossRef]

Beach, R. J.

Bogachev, A. V.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 95 (2012).
[CrossRef]

Chen, J.

Dubinski, M. A.

Dudov, A. M.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 95 (2012).
[CrossRef]

Fox, C. D.

G. A. Pitz, C. D. Fox, and G. P. Perram, Phys. Rev. A 84, 032708 (2011).
[CrossRef]

Garanin, S. G.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 95 (2012).
[CrossRef]

Gribov, L. A.

L. A. Gribov, I. A. Novakov, A. I. Pavlyuchko, and E. V. Vasil’ev, J. Struct. Chem. 47, 635 (2006).
[CrossRef]

Hager, G. D.

G. D. Hager and G. P. Perram, Appl. Phys. B 101, 45 (2010).

Hecht, J.

J. Hecht, Laser Focus World 4, 49 (2011).

Hua, W.

Kanz, V. K.

Knize, R. J.

R. J. Knize, B. V. Zhdanov, and M. K. Shaffer, Opt. Express 19, 7894 (2011).
[CrossRef]

B. V. Zhdanov, J. Sell, and R. J. Knize, Electron. Lett. 44, 582 (2008).
[CrossRef]

Krause, L.

E. Walentynowicz, R. A. Phaneuf, and L. Krause, Can. J Phys. 52, 589 (1974).

Krupke, W. F.

Kulikov, S. M.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 95 (2012).
[CrossRef]

Li, Y.

Liu, L.

Lu, Q.

Merkle, L. D.

Mikaelian, G. T.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 95 (2012).
[CrossRef]

Novakov, I. A.

L. A. Gribov, I. A. Novakov, A. I. Pavlyuchko, and E. V. Vasil’ev, J. Struct. Chem. 47, 635 (2006).
[CrossRef]

Panarin, V. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 95 (2012).
[CrossRef]

Pautov, V. O.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 95 (2012).
[CrossRef]

Pavlyuchko, A. I.

L. A. Gribov, I. A. Novakov, A. I. Pavlyuchko, and E. V. Vasil’ev, J. Struct. Chem. 47, 635 (2006).
[CrossRef]

Payne, S. A.

Perram, G. P.

G. A. Pitz, C. D. Fox, and G. P. Perram, Phys. Rev. A 84, 032708 (2011).
[CrossRef]

G. D. Hager and G. P. Perram, Appl. Phys. B 101, 45 (2010).

Phaneuf, R. A.

E. Walentynowicz, R. A. Phaneuf, and L. Krause, Can. J Phys. 52, 589 (1974).

Pitz, G. A.

G. A. Pitz, C. D. Fox, and G. P. Perram, Phys. Rev. A 84, 032708 (2011).
[CrossRef]

Rus, A. V.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 95 (2012).
[CrossRef]

Sell, J.

B. V. Zhdanov, J. Sell, and R. J. Knize, Electron. Lett. 44, 582 (2008).
[CrossRef]

Shaffer, M. K.

Sukharev, S. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 95 (2012).
[CrossRef]

Van Artsdalen, E. R.

E. R. Van Artsdalen, J. Chem. Phys. 10, 653 (1942).
[CrossRef]

Vasil’ev, E. V.

L. A. Gribov, I. A. Novakov, A. I. Pavlyuchko, and E. V. Vasil’ev, J. Struct. Chem. 47, 635 (2006).
[CrossRef]

Walentynowicz, E.

E. Walentynowicz, R. A. Phaneuf, and L. Krause, Can. J Phys. 52, 589 (1974).

Wang, H.

Xu, X.

Yang, Z.

Yeroshenko, V. A.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 95 (2012).
[CrossRef]

Zhdanov, B. V.

R. J. Knize, B. V. Zhdanov, and M. K. Shaffer, Opt. Express 19, 7894 (2011).
[CrossRef]

B. V. Zhdanov, J. Sell, and R. J. Knize, Electron. Lett. 44, 582 (2008).
[CrossRef]

Appl. Phys. B

G. D. Hager and G. P. Perram, Appl. Phys. B 101, 45 (2010).

Can. J Phys.

E. Walentynowicz, R. A. Phaneuf, and L. Krause, Can. J Phys. 52, 589 (1974).

Electron. Lett.

B. V. Zhdanov, J. Sell, and R. J. Knize, Electron. Lett. 44, 582 (2008).
[CrossRef]

J. Chem. Phys.

E. R. Van Artsdalen, J. Chem. Phys. 10, 653 (1942).
[CrossRef]

J. Opt. Soc. Am. B

J. Prog. Quantum Electron.

W. F. Krupke, J. Prog. Quantum Electron. 36, 4 (2012).
[CrossRef]

J. Struct. Chem.

L. A. Gribov, I. A. Novakov, A. I. Pavlyuchko, and E. V. Vasil’ev, J. Struct. Chem. 47, 635 (2006).
[CrossRef]

Laser Focus World

J. Hecht, Laser Focus World 4, 49 (2011).

Opt. Express

Phys. Rev. A

G. A. Pitz, C. D. Fox, and G. P. Perram, Phys. Rev. A 84, 032708 (2011).
[CrossRef]

Quantum Electron.

A. V. Bogachev, S. G. Garanin, A. M. Dudov, V. A. Yeroshenko, S. M. Kulikov, G. T. Mikaelian, V. A. Panarin, V. O. Pautov, A. V. Rus, and S. A. Sukharev, Quantum Electron. 42, 95 (2012).
[CrossRef]

Other

Available online at http://webbook.nist.gov .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Dependence of Plase and T on u for flowing gas DPAL at different Pp and C2H6/He=1/5. The curves for T(u) are very close for the given values of Pp, hence only one of them is shown.

Fig. 2.
Fig. 2.

Dependence of Plase on Pp for flowing gas DPALs at different u and content of C2H6. Solid lines indicate C2H6/He=1/5 and dashed lines C2H6 without He.

Fig. 3.
Fig. 3.

Comparison of Plase in the gas flow DPALs using ethane (solid line) and propane (dashed line).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Plase=ηslope(PpPth),
ηslope=ηqηdelηmodeηresηabs
ηres=(1r)t(1t2r)(1+r)
ηabs=1exp(g31L)
Pth=hνpLπr02(n2/τ21+n3/τ31)/(ηdel/ηabs)
Ω=Ppηdelπr02(exp(g31[Ω,T]L)1)g31[Ω,T]L.
Rheat=Ptherm,
Rheat=2πr0k(T)Nu(TTw)+πr02nwuTwTcp(T)dT,
Ptherm=νpνlνp(ηdelηabsPphνpLπr02n3τ31),

Metrics