Abstract

Here we present a surface based on double-layered nanoparticle stacks suitable for spectro-electrochemical applications. The structure is formed on a continuous gold layer by a two-dimensional periodic array of stacks of gold and tantalum pentoxide nanodisks. Reflection spectra in the visible wavelength region showed the multiple-resonant nature of surface plasmon (SP) excitations in the nanostructure, which is in good agreement with simulations based on a finite-difference-time-domain method. The multiple SP resonances can be tuned to various wavelength regions, which are required for simultaneous enhancement at excitation and emission wavelengths. Cyclic voltammetry measurements on the nanostructure proved the applicability of electrochemical methods involving interfacial redox processes.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription