Abstract

Here we present a surface based on double-layered nanoparticle stacks suitable for spectro-electrochemical applications. The structure is formed on a continuous gold layer by a two-dimensional periodic array of stacks of gold and tantalum pentoxide nanodisks. Reflection spectra in the visible wavelength region showed the multiple-resonant nature of surface plasmon (SP) excitations in the nanostructure, which is in good agreement with simulations based on a finite-difference-time-domain method. The multiple SP resonances can be tuned to various wavelength regions, which are required for simultaneous enhancement at excitation and emission wavelengths. Cyclic voltammetry measurements on the nanostructure proved the applicability of electrochemical methods involving interfacial redox processes.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Nowak, C. Luening, W. Knoll, and R. L. C. Naumann, Appl. Spectrosc. 63, 1068 (2009).
    [CrossRef]
  2. M. Grosserueschkamp, C. Nowak, D. Schach, W. Schaertl, W. Knoll, and R. L. C. Naumann, J. Phys. Chem. C 113, 17698 (2009).
    [CrossRef]
  3. Y. Chu, M. G. Banaee, and K. B. Crozier, ACS Nano 4, 2804 (2010).
    [CrossRef]
  4. W.-D. Li, F. Ding, J. Hu, and S. Y. Chou, Opt. Express 19, 3925 (2011).
    [CrossRef]
  5. N. Papanikolaou, Phys. Rev. B 75, 235426 (2007).
    [CrossRef]
  6. V. G. Kravets, F. Schedin, and A. N. Grigorenko, Phys. Rev. Lett. 101, 087403 (2008).
    [CrossRef]
  7. N. Felidj, S. L. Truong, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, J. Chem. Phys. 120, 7141 (2004).
    [CrossRef]
  8. N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, Phys. Rev. B 66 (2002).
    [CrossRef]
  9. A. Ghoshal and P. G. Kik, J. Appl. Phys. 103, 113111 (2008).
    [CrossRef]
  10. Y. Z. Chu and K. B. Crozier, Opt. Lett. 34, 244 (2009).
    [CrossRef]
  11. J. Cesario, R. Quidant, G. Badenes, and S. Enoch, Opt. Lett. 30, 3404 (2005).
    [CrossRef]
  12. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  13. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
    [CrossRef]
  14. J.-P. Berenger, J. Comput. Phys. 114, 185 (1994).
    [CrossRef]
  15. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, Appl. Opt. 37, 5271 (1998).
    [CrossRef]
  16. D. Pletcher, S. E. Group, R. Greff, R. Peat, and L. M. Peter, Instrumental Methods in Electrochemistry (Ellis Horwood, 2001).
  17. D. W. H. Rankin, Crystallogr. Rev. 15, 223 (2009).
    [CrossRef]

2011

2010

Y. Chu, M. G. Banaee, and K. B. Crozier, ACS Nano 4, 2804 (2010).
[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

2009

D. W. H. Rankin, Crystallogr. Rev. 15, 223 (2009).
[CrossRef]

M. Grosserueschkamp, C. Nowak, D. Schach, W. Schaertl, W. Knoll, and R. L. C. Naumann, J. Phys. Chem. C 113, 17698 (2009).
[CrossRef]

Y. Z. Chu and K. B. Crozier, Opt. Lett. 34, 244 (2009).
[CrossRef]

C. Nowak, C. Luening, W. Knoll, and R. L. C. Naumann, Appl. Spectrosc. 63, 1068 (2009).
[CrossRef]

2008

V. G. Kravets, F. Schedin, and A. N. Grigorenko, Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef]

A. Ghoshal and P. G. Kik, J. Appl. Phys. 103, 113111 (2008).
[CrossRef]

2007

N. Papanikolaou, Phys. Rev. B 75, 235426 (2007).
[CrossRef]

2005

2004

N. Felidj, S. L. Truong, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, J. Chem. Phys. 120, 7141 (2004).
[CrossRef]

2002

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, Phys. Rev. B 66 (2002).
[CrossRef]

1998

1994

J.-P. Berenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

Aubard, J.

N. Felidj, S. L. Truong, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, J. Chem. Phys. 120, 7141 (2004).
[CrossRef]

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, Phys. Rev. B 66 (2002).
[CrossRef]

Aussenegg, F. R.

N. Felidj, S. L. Truong, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, J. Chem. Phys. 120, 7141 (2004).
[CrossRef]

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, Phys. Rev. B 66 (2002).
[CrossRef]

Badenes, G.

Banaee, M. G.

Y. Chu, M. G. Banaee, and K. B. Crozier, ACS Nano 4, 2804 (2010).
[CrossRef]

Berenger, J.-P.

J.-P. Berenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

Cesario, J.

Chou, S. Y.

Chu, Y.

Y. Chu, M. G. Banaee, and K. B. Crozier, ACS Nano 4, 2804 (2010).
[CrossRef]

Chu, Y. Z.

Crozier, K. B.

Y. Chu, M. G. Banaee, and K. B. Crozier, ACS Nano 4, 2804 (2010).
[CrossRef]

Y. Z. Chu and K. B. Crozier, Opt. Lett. 34, 244 (2009).
[CrossRef]

Ding, F.

Djurisic, A. B.

Elazar, J. M.

Enoch, S.

Felidj, N.

N. Felidj, S. L. Truong, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, J. Chem. Phys. 120, 7141 (2004).
[CrossRef]

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, Phys. Rev. B 66 (2002).
[CrossRef]

Ghoshal, A.

A. Ghoshal and P. G. Kik, J. Appl. Phys. 103, 113111 (2008).
[CrossRef]

Greff, R.

D. Pletcher, S. E. Group, R. Greff, R. Peat, and L. M. Peter, Instrumental Methods in Electrochemistry (Ellis Horwood, 2001).

Grigorenko, A. N.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef]

Grosserueschkamp, M.

M. Grosserueschkamp, C. Nowak, D. Schach, W. Schaertl, W. Knoll, and R. L. C. Naumann, J. Phys. Chem. C 113, 17698 (2009).
[CrossRef]

Group, S. E.

D. Pletcher, S. E. Group, R. Greff, R. Peat, and L. M. Peter, Instrumental Methods in Electrochemistry (Ellis Horwood, 2001).

Hohenau, A.

N. Felidj, S. L. Truong, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, J. Chem. Phys. 120, 7141 (2004).
[CrossRef]

Hu, J.

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

Kik, P. G.

A. Ghoshal and P. G. Kik, J. Appl. Phys. 103, 113111 (2008).
[CrossRef]

Knoll, W.

C. Nowak, C. Luening, W. Knoll, and R. L. C. Naumann, Appl. Spectrosc. 63, 1068 (2009).
[CrossRef]

M. Grosserueschkamp, C. Nowak, D. Schach, W. Schaertl, W. Knoll, and R. L. C. Naumann, J. Phys. Chem. C 113, 17698 (2009).
[CrossRef]

Kravets, V. G.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef]

Krenn, J. R.

N. Felidj, S. L. Truong, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, J. Chem. Phys. 120, 7141 (2004).
[CrossRef]

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, Phys. Rev. B 66 (2002).
[CrossRef]

Leitner, A.

N. Felidj, S. L. Truong, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, J. Chem. Phys. 120, 7141 (2004).
[CrossRef]

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, Phys. Rev. B 66 (2002).
[CrossRef]

Levi, G.

N. Felidj, S. L. Truong, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, J. Chem. Phys. 120, 7141 (2004).
[CrossRef]

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, Phys. Rev. B 66 (2002).
[CrossRef]

Li, W.-D.

Luening, C.

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Majewski, M. L.

Naumann, R. L. C.

C. Nowak, C. Luening, W. Knoll, and R. L. C. Naumann, Appl. Spectrosc. 63, 1068 (2009).
[CrossRef]

M. Grosserueschkamp, C. Nowak, D. Schach, W. Schaertl, W. Knoll, and R. L. C. Naumann, J. Phys. Chem. C 113, 17698 (2009).
[CrossRef]

Nowak, C.

M. Grosserueschkamp, C. Nowak, D. Schach, W. Schaertl, W. Knoll, and R. L. C. Naumann, J. Phys. Chem. C 113, 17698 (2009).
[CrossRef]

C. Nowak, C. Luening, W. Knoll, and R. L. C. Naumann, Appl. Spectrosc. 63, 1068 (2009).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

Papanikolaou, N.

N. Papanikolaou, Phys. Rev. B 75, 235426 (2007).
[CrossRef]

Peat, R.

D. Pletcher, S. E. Group, R. Greff, R. Peat, and L. M. Peter, Instrumental Methods in Electrochemistry (Ellis Horwood, 2001).

Peter, L. M.

D. Pletcher, S. E. Group, R. Greff, R. Peat, and L. M. Peter, Instrumental Methods in Electrochemistry (Ellis Horwood, 2001).

Pletcher, D.

D. Pletcher, S. E. Group, R. Greff, R. Peat, and L. M. Peter, Instrumental Methods in Electrochemistry (Ellis Horwood, 2001).

Quidant, R.

Rakic, A. D.

Rankin, D. W. H.

D. W. H. Rankin, Crystallogr. Rev. 15, 223 (2009).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

Schach, D.

M. Grosserueschkamp, C. Nowak, D. Schach, W. Schaertl, W. Knoll, and R. L. C. Naumann, J. Phys. Chem. C 113, 17698 (2009).
[CrossRef]

Schaertl, W.

M. Grosserueschkamp, C. Nowak, D. Schach, W. Schaertl, W. Knoll, and R. L. C. Naumann, J. Phys. Chem. C 113, 17698 (2009).
[CrossRef]

Schedin, F.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef]

Schider, G.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, Phys. Rev. B 66 (2002).
[CrossRef]

Truong, S. L.

N. Felidj, S. L. Truong, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, J. Chem. Phys. 120, 7141 (2004).
[CrossRef]

ACS Nano

Y. Chu, M. G. Banaee, and K. B. Crozier, ACS Nano 4, 2804 (2010).
[CrossRef]

Appl. Opt.

Appl. Spectrosc.

Comput. Phys. Commun.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

Crystallogr. Rev.

D. W. H. Rankin, Crystallogr. Rev. 15, 223 (2009).
[CrossRef]

J. Appl. Phys.

A. Ghoshal and P. G. Kik, J. Appl. Phys. 103, 113111 (2008).
[CrossRef]

J. Chem. Phys.

N. Felidj, S. L. Truong, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, J. Chem. Phys. 120, 7141 (2004).
[CrossRef]

J. Comput. Phys.

J.-P. Berenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

J. Phys. Chem. C

M. Grosserueschkamp, C. Nowak, D. Schach, W. Schaertl, W. Knoll, and R. L. C. Naumann, J. Phys. Chem. C 113, 17698 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, Phys. Rev. B 66 (2002).
[CrossRef]

N. Papanikolaou, Phys. Rev. B 75, 235426 (2007).
[CrossRef]

Phys. Rev. Lett.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, Phys. Rev. Lett. 101, 087403 (2008).
[CrossRef]

Other

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

D. Pletcher, S. E. Group, R. Greff, R. Peat, and L. M. Peter, Instrumental Methods in Electrochemistry (Ellis Horwood, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic of the structure geometry; and (b) scanning electron microscope image of the disc-stack array on the gold surface recorded under an angle of 75 deg.

Fig. 2.
Fig. 2.

Computed reflection spectra of the nanostructure with varying disc diameters d (black=100nm, red=150nm, blue=200nm, green=250nm) and grating periods G.

Fig. 3.
Fig. 3.

(a) Schematic of the experimental setup for reflection measurements; (b) measured and (c) computed reflection spectra of two different structures. The lower red curve represents the reflection measurement of a structure with G=450nm and d=230nm and the higher blue curve shows the spectrum of the structure with G=650nm and d=200nm.

Fig. 4.
Fig. 4.

Cyclic voltammetry of 10 mM potassium ferricyanide in PBS (pH=8) measured on top of the structure with a grating period of 450 nm and disk diameter of 200 nm. The inset shows the peak current densities jp of the anodic and cathodic peaks plotted as a function of the square root of the scan rate ν.

Metrics