Abstract

Temperature induced refractive index changes are an important aspect in today’s fiber amplifiers with high average power. For many processes, their time dependence is critical. Here, we analyze the impact of radial heat diffusion on the optical phase. We modulated the pump power in a 10 W amplifier and measured the frequency response of the optical phase. We compared the result with the calculated frequency response of the temperature in the fiber core, which shows the same characteristics. Additionally, we analyzed the influence of fiber parameters on the temperature dynamics.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Express 20, 3997 (2012).
    [CrossRef]
  2. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, Opt. Express 19, 23965 (2011).
    [CrossRef]
  3. A. V. Smith and J. J. Smith, Opt. Express 19, 10180 (2011).
    [CrossRef]
  4. B. Ward, C. Robin, and I. Dajani, Opt. Express 20, 11407 (2012).
    [CrossRef]
  5. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, Opt. Express 19, 13218 (2011).
    [CrossRef]
  6. D. C. Brown and H. J. Hoffman, IEEE J. Quantum Electron. 37, 207 (2001).
    [CrossRef]
  7. M. K. Davis, M. F. J. Digonnet, and R. H. Pantell, J. Lightwave Technol. 16, 1013 (1998).
    [CrossRef]
  8. M. K. Davis and M. F. J. Digonnet, J. Lightwave Technol. 18, 161 (2000).
    [CrossRef]
  9. J. E. Guyer, D. Wheeler, and J. A. Warren, Comput. Sci. Eng. 11, 615 (2009).
    [CrossRef]
  10. H. Tünnermann, J. Neumann, D. Kracht, and P. Weßels, Opt. Express 20, 13539 (2012).
    [CrossRef]

2012

2011

2009

J. E. Guyer, D. Wheeler, and J. A. Warren, Comput. Sci. Eng. 11, 615 (2009).
[CrossRef]

2001

D. C. Brown and H. J. Hoffman, IEEE J. Quantum Electron. 37, 207 (2001).
[CrossRef]

2000

1998

Alkeskjold, T. T.

Broeng, J.

Brown, D. C.

D. C. Brown and H. J. Hoffman, IEEE J. Quantum Electron. 37, 207 (2001).
[CrossRef]

Dajani, I.

Davis, M. K.

Digonnet, M. F. J.

Eidam, T.

Guyer, J. E.

J. E. Guyer, D. Wheeler, and J. A. Warren, Comput. Sci. Eng. 11, 615 (2009).
[CrossRef]

Hansen, K. R.

Hoffman, H. J.

D. C. Brown and H. J. Hoffman, IEEE J. Quantum Electron. 37, 207 (2001).
[CrossRef]

Jansen, F.

Jauregui, C.

Kracht, D.

Lægsgaard, J.

Liem, A.

Limpert, J.

Neumann, J.

Otto, H.-J.

Pantell, R. H.

Robin, C.

Schmidt, O.

Schreiber, T.

Smith, A. V.

Smith, J. J.

Stutzki, F.

Tünnermann, A.

Tünnermann, H.

Ward, B.

Warren, J. A.

J. E. Guyer, D. Wheeler, and J. A. Warren, Comput. Sci. Eng. 11, 615 (2009).
[CrossRef]

Weßels, P.

Wheeler, D.

J. E. Guyer, D. Wheeler, and J. A. Warren, Comput. Sci. Eng. 11, 615 (2009).
[CrossRef]

Wirth, C.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Temperature as a function of radial position and time for 0.02 Hz modulation and (b) 40 Hz modulation. (c) Magnitude and (d) phase of the induced temperature modulation for different radial position.

Fig. 2.
Fig. 2.

Dependence of the transfer function on fiber parameters. (a) Core size/mode field diameter, (b) thermal conductivity k, (c) heat transfer coefficient h, and (d) cladding radius.

Fig. 3.
Fig. 3.

Interferometric setup for the optical phase measurement.

Fig. 4.
Fig. 4.

Comparison of simulated temperature transfer function and measured optical phase shift.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

cp(r)ρ(r)T(r,t)t=1rr[rk(r)T(r,t)r]+q(r,t)
T(r,t)|r=r0r=hk(T(r0)Tair),

Metrics