Abstract

We demonstrate that timing jitter has a strong influence on supercontinua generated in a photonic crystal fiber ring cavity synchronously pumped by 140 fs pulses. The global dynamics with respect to cavity detuning is analyzed both numerically and experimentally by tracking the cavity pulse energy. The results show that low-frequency timing jitter, induced by both the pump oscillator and the external cavity, masks the fine underlying bifurcation structure of the system. Numerical simulations in the absence of timing jitter reveal that the system dynamics fall into four qualitatively different regimes. The existence of these regimes is experimentally observed in first-return diagrams.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. McCarthy, S. Mailhot, and J.-F. Cormier, Opt. Commun. 88, 403 (1992).
    [CrossRef]
  2. M. Kues, N. Brauckmann, T. Walbaum, P. Groß, and C. Fallnich, Opt. Express 17, 15827 (2009).
    [CrossRef]
  3. N. Brauckmann, M. Kues, P. Groß, and C. Fallnich, Opt. Express 18, 20667 (2010).
    [CrossRef]
  4. N. Brauckmann, M. Kues, P. Groß, and C. Fallnich, Opt. Express 18, 24611 (2010).
    [CrossRef]
  5. N. Brauckmann, M. Kues, T. Walbaum, P. Groß, and C. Fallnich, Opt. Express 18, 7190 (2010).
    [CrossRef]
  6. N. Brauckmann, M. Kues, P. Groß, and C. Fallnich, Opt. Express 19, 14763 (2011).
    [CrossRef]
  7. M. Tlidi and L. Gelens, Opt. Lett. 35, 306 (2010).
    [CrossRef]
  8. M. Tlidi, A. Mussot, E. Louvergneaux, G. Kozyreff, A. G. Vladimirov, and M. Taki, Opt. Lett. 32, 662 (2007).
    [CrossRef]
  9. G. Steinmeyer, A. Buchholz, M. Hänsel, M. Heuer, A. Schwache, and F. Mitschke, Phys. Rev. A 52, 830 (1995).
    [CrossRef]
  10. G. Steinmeyer and F. Mitschke, Appl. Phys. B: Lasers Opt. 62, 367 (1996).
    [CrossRef]
  11. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).
  12. R. Paschotta, Appl. Phys. B: Lasers Opt. 79, 153 (2004).
    [CrossRef]
  13. H. A. Haus and A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
    [CrossRef]
  14. A. Schlatter, B. Rudin, S. C. Zeller, R. Paschotta, G. J. Spühler, L. Krainer, N. Haverkamp, H. R. Telle, and U. Keller, Opt. Lett. 30, 1536 (2005).
    [CrossRef]

2011 (1)

2010 (4)

2009 (1)

2007 (1)

2005 (1)

2004 (1)

R. Paschotta, Appl. Phys. B: Lasers Opt. 79, 153 (2004).
[CrossRef]

1996 (1)

G. Steinmeyer and F. Mitschke, Appl. Phys. B: Lasers Opt. 62, 367 (1996).
[CrossRef]

1995 (1)

G. Steinmeyer, A. Buchholz, M. Hänsel, M. Heuer, A. Schwache, and F. Mitschke, Phys. Rev. A 52, 830 (1995).
[CrossRef]

1993 (1)

H. A. Haus and A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
[CrossRef]

1992 (1)

N. McCarthy, S. Mailhot, and J.-F. Cormier, Opt. Commun. 88, 403 (1992).
[CrossRef]

Brauckmann, N.

Buchholz, A.

G. Steinmeyer, A. Buchholz, M. Hänsel, M. Heuer, A. Schwache, and F. Mitschke, Phys. Rev. A 52, 830 (1995).
[CrossRef]

Cormier, J.-F.

N. McCarthy, S. Mailhot, and J.-F. Cormier, Opt. Commun. 88, 403 (1992).
[CrossRef]

Dudley, J. M.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).

Fallnich, C.

Gelens, L.

Groß, P.

Hänsel, M.

G. Steinmeyer, A. Buchholz, M. Hänsel, M. Heuer, A. Schwache, and F. Mitschke, Phys. Rev. A 52, 830 (1995).
[CrossRef]

Haus, H. A.

H. A. Haus and A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
[CrossRef]

Haverkamp, N.

Heuer, M.

G. Steinmeyer, A. Buchholz, M. Hänsel, M. Heuer, A. Schwache, and F. Mitschke, Phys. Rev. A 52, 830 (1995).
[CrossRef]

Keller, U.

Kozyreff, G.

Krainer, L.

Kues, M.

Louvergneaux, E.

Mailhot, S.

N. McCarthy, S. Mailhot, and J.-F. Cormier, Opt. Commun. 88, 403 (1992).
[CrossRef]

McCarthy, N.

N. McCarthy, S. Mailhot, and J.-F. Cormier, Opt. Commun. 88, 403 (1992).
[CrossRef]

Mecozzi, A.

H. A. Haus and A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
[CrossRef]

Mitschke, F.

G. Steinmeyer and F. Mitschke, Appl. Phys. B: Lasers Opt. 62, 367 (1996).
[CrossRef]

G. Steinmeyer, A. Buchholz, M. Hänsel, M. Heuer, A. Schwache, and F. Mitschke, Phys. Rev. A 52, 830 (1995).
[CrossRef]

Mussot, A.

Paschotta, R.

Rudin, B.

Schlatter, A.

Schwache, A.

G. Steinmeyer, A. Buchholz, M. Hänsel, M. Heuer, A. Schwache, and F. Mitschke, Phys. Rev. A 52, 830 (1995).
[CrossRef]

Spühler, G. J.

Steinmeyer, G.

G. Steinmeyer and F. Mitschke, Appl. Phys. B: Lasers Opt. 62, 367 (1996).
[CrossRef]

G. Steinmeyer, A. Buchholz, M. Hänsel, M. Heuer, A. Schwache, and F. Mitschke, Phys. Rev. A 52, 830 (1995).
[CrossRef]

Taki, M.

Taylor, J. R.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).

Telle, H. R.

Tlidi, M.

Vladimirov, A. G.

Walbaum, T.

Zeller, S. C.

Appl. Phys. B: Lasers Opt. (2)

G. Steinmeyer and F. Mitschke, Appl. Phys. B: Lasers Opt. 62, 367 (1996).
[CrossRef]

R. Paschotta, Appl. Phys. B: Lasers Opt. 79, 153 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. A. Haus and A. Mecozzi, IEEE J. Quantum Electron. 29, 983 (1993).
[CrossRef]

Opt. Commun. (1)

N. McCarthy, S. Mailhot, and J.-F. Cormier, Opt. Commun. 88, 403 (1992).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. A (1)

G. Steinmeyer, A. Buchholz, M. Hänsel, M. Heuer, A. Schwache, and F. Mitschke, Phys. Rev. A 52, 830 (1995).
[CrossRef]

Other (1)

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup of the synchronously pumped PCF ring cavity. PD0 and PD1 denote 1 GHz photodiodes. PD0 is used for monitoring any possible fluctuations in the pump pulse energy during the experiment and PD1 records the total output pulse energy. The setup is enclosed in a box to minimize air vibrations.

Fig. 2.
Fig. 2.

(a) Experimental bifurcation diagram of the total output pulse energy versus cavity detuning. The period-doubling bifurcation occurs in the shaded area (PD). The horizontal and vertical bars in (a) and (b) correspond to the experimental or simulated RMS timing jitter and the energy noise. The experimental energy noise was quantified in the steady-state regime; (b) Simulation including timing jitter (RMS width 100 fs); (c) Timing jitter-free simulation with experimental parameters. The inset shows a typical period-doubling bifurcation. The regions i–iii and I–IV are explained in the text.

Fig. 3.
Fig. 3.

Influence of the RMS width of the simulated timing jitter on the position of the sharp transition in the bifurcation diagram. τtrans was generated by extracting the position of the sharp transition from 100 independent simulations and taking the average.

Fig. 4.
Fig. 4.

(a)–(d) Sequence of first-return diagrams recorded at increasing values of τdelay exhibiting (a) steady-state, (b) and (c) multiple periodicities, and (d) highly complex behavior. The error bars in (a) are defined as in Fig. 2(a) and also apply to (b)–(d). Sections of the oscilloscope traces corresponding to (a) and (b) are shown in (e) and (f).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

An+1(z=0,t)=1R1An(z=L,t+τeff)+iR1Apump(t),
τeff=τdelay+τjitter,

Metrics