Abstract

We demonstrate a multicolor optical filter and isolator based on a double-cavity magneto-optical (MO) photonic crystal. Being grown as a heteroepitaxial all-garnet multilayer, it compromises a strong MO response and high optical transmittance. Low-loss, high Faraday rotation passbands as well as strong light rejection within the stop band were achieved by optimization of distance between cavities and repetition number of distributed Bragg reflectors.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Bi, J. Hu, P. Jiang, D.-H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, Nature Photon. 5, 758 (2011).
    [CrossRef]
  2. M. Inoue, K. Arai, T. Fujii, and M. Abe, J. Appl. Phys. 83, 6768 (1998).
    [CrossRef]
  3. S. I. Khartsev and A. M. Grishin, Opt. Lett. 36, 2806 (2011).
    [CrossRef]
  4. S. Sakaguchi and N. Sugimoto, Opt. Commun. 162, 64 (1999).
    [CrossRef]
  5. M. J. Steel, M. Levy, and R. M. Osgood, IEEE Photon. Technol. Lett. 12, 1171 (2000).
    [CrossRef]
  6. D. O. Dzibrou and A. M. Grishin, J. Appl. Phys. 106, 043901 (2009).
    [CrossRef]
  7. Š. Višňovský, K. Postava, and T. Yamaguchi, Czech. J. Phys. 51, 917 (2001).
    [CrossRef]

2011 (2)

L. Bi, J. Hu, P. Jiang, D.-H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, Nature Photon. 5, 758 (2011).
[CrossRef]

S. I. Khartsev and A. M. Grishin, Opt. Lett. 36, 2806 (2011).
[CrossRef]

2009 (1)

D. O. Dzibrou and A. M. Grishin, J. Appl. Phys. 106, 043901 (2009).
[CrossRef]

2001 (1)

Š. Višňovský, K. Postava, and T. Yamaguchi, Czech. J. Phys. 51, 917 (2001).
[CrossRef]

2000 (1)

M. J. Steel, M. Levy, and R. M. Osgood, IEEE Photon. Technol. Lett. 12, 1171 (2000).
[CrossRef]

1999 (1)

S. Sakaguchi and N. Sugimoto, Opt. Commun. 162, 64 (1999).
[CrossRef]

1998 (1)

M. Inoue, K. Arai, T. Fujii, and M. Abe, J. Appl. Phys. 83, 6768 (1998).
[CrossRef]

Abe, M.

M. Inoue, K. Arai, T. Fujii, and M. Abe, J. Appl. Phys. 83, 6768 (1998).
[CrossRef]

Arai, K.

M. Inoue, K. Arai, T. Fujii, and M. Abe, J. Appl. Phys. 83, 6768 (1998).
[CrossRef]

Bi, L.

L. Bi, J. Hu, P. Jiang, D.-H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, Nature Photon. 5, 758 (2011).
[CrossRef]

Dionne, G. F.

L. Bi, J. Hu, P. Jiang, D.-H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, Nature Photon. 5, 758 (2011).
[CrossRef]

Dzibrou, D. O.

D. O. Dzibrou and A. M. Grishin, J. Appl. Phys. 106, 043901 (2009).
[CrossRef]

Fujii, T.

M. Inoue, K. Arai, T. Fujii, and M. Abe, J. Appl. Phys. 83, 6768 (1998).
[CrossRef]

Grishin, A. M.

S. I. Khartsev and A. M. Grishin, Opt. Lett. 36, 2806 (2011).
[CrossRef]

D. O. Dzibrou and A. M. Grishin, J. Appl. Phys. 106, 043901 (2009).
[CrossRef]

Hu, J.

L. Bi, J. Hu, P. Jiang, D.-H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, Nature Photon. 5, 758 (2011).
[CrossRef]

Inoue, M.

M. Inoue, K. Arai, T. Fujii, and M. Abe, J. Appl. Phys. 83, 6768 (1998).
[CrossRef]

Jiang, P.

L. Bi, J. Hu, P. Jiang, D.-H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, Nature Photon. 5, 758 (2011).
[CrossRef]

Khartsev, S. I.

Kim, D.-H.

L. Bi, J. Hu, P. Jiang, D.-H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, Nature Photon. 5, 758 (2011).
[CrossRef]

Kimerling, L. C.

L. Bi, J. Hu, P. Jiang, D.-H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, Nature Photon. 5, 758 (2011).
[CrossRef]

Levy, M.

M. J. Steel, M. Levy, and R. M. Osgood, IEEE Photon. Technol. Lett. 12, 1171 (2000).
[CrossRef]

Osgood, R. M.

M. J. Steel, M. Levy, and R. M. Osgood, IEEE Photon. Technol. Lett. 12, 1171 (2000).
[CrossRef]

Postava, K.

Š. Višňovský, K. Postava, and T. Yamaguchi, Czech. J. Phys. 51, 917 (2001).
[CrossRef]

Ross, C. A.

L. Bi, J. Hu, P. Jiang, D.-H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, Nature Photon. 5, 758 (2011).
[CrossRef]

Sakaguchi, S.

S. Sakaguchi and N. Sugimoto, Opt. Commun. 162, 64 (1999).
[CrossRef]

Steel, M. J.

M. J. Steel, M. Levy, and R. M. Osgood, IEEE Photon. Technol. Lett. 12, 1171 (2000).
[CrossRef]

Sugimoto, N.

S. Sakaguchi and N. Sugimoto, Opt. Commun. 162, 64 (1999).
[CrossRef]

Višnovský, Š.

Š. Višňovský, K. Postava, and T. Yamaguchi, Czech. J. Phys. 51, 917 (2001).
[CrossRef]

Yamaguchi, T.

Š. Višňovský, K. Postava, and T. Yamaguchi, Czech. J. Phys. 51, 917 (2001).
[CrossRef]

Czech. J. Phys. (1)

Š. Višňovský, K. Postava, and T. Yamaguchi, Czech. J. Phys. 51, 917 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. J. Steel, M. Levy, and R. M. Osgood, IEEE Photon. Technol. Lett. 12, 1171 (2000).
[CrossRef]

J. Appl. Phys. (2)

D. O. Dzibrou and A. M. Grishin, J. Appl. Phys. 106, 043901 (2009).
[CrossRef]

M. Inoue, K. Arai, T. Fujii, and M. Abe, J. Appl. Phys. 83, 6768 (1998).
[CrossRef]

Nature Photon. (1)

L. Bi, J. Hu, P. Jiang, D.-H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, Nature Photon. 5, 758 (2011).
[CrossRef]

Opt. Commun. (1)

S. Sakaguchi and N. Sugimoto, Opt. Commun. 162, 64 (1999).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental transmittance and FR spectra in a 7-reflector single cavity [MN]7M2[NM]7 MOPC. Maximum FR|ΘFmax|=17deg at the resonant transmittance of 0.71 corresponds to the MO quality factor Q=2|ΘF|/ln(1/T)=99.3deg at λres=775nm.

Fig. 2.
Fig. 2.

Experimental (open circle) and modeled (solid line) transmittance and FR spectra in MOPC1 designed for the resonance wavelength λres=760nm.

Fig. 3.
Fig. 3.

Experimental (open circle) and modeled (solid line) transmittance and FR spectra in MOPC2 with two microcavities M2 for λres=760nm.

Fig. 4.
Fig. 4.

Experimental (open circle) and calculated (solid line) transmittance and FR spectra in MOPC3 designed for λres=750nm.

Tables (1)

Tables Icon

Table 1. Properties of MO Photonic Crystals and Reference Bi2.97Er0.03Fe4Ga0.5Al0.5O12 Film

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

[n(λ)ik(λ)]2=1+4.581(303nm/λ)2+0.111(494nm/λ)2+i0.08(494nm/λ).

Metrics