Abstract

We propose and describe a physical model of polarization-dependent principal modes (PDPMs) in a given setting of dual-LP11 mode and dual-polarization transmission over weakly guiding few-mode fibers (FMFs). Proof-of-concept numerical simulations illustrate that the PDPMs do not suffer from both mode dispersion and polarization mode dispersion to first order of frequency variation, even in the presence of random spatial- and polarization-mode coupling. The proposed PDPM model can be a basic formalism for analyzing and controlling of mode coupling/dispersion-induced distortion, in the given optical multiple-input multiple-output scheme of dual-LP11 mode and dual-polarization transmission over FMFs.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Ho and J. M. Kahn, J. Lightwave Technol. 29, 3119 (2011).
    [CrossRef]
  2. F. Yaman, N. Bai, B. Zhu, T. Wang, and G. Li, Opt. Express 18, 13250 (2010).
    [CrossRef]
  3. C. Koebele, M. Salsi, G. Charlet, and S. Bigo, IEEE Photon. Technol. Lett. 23, 1316 (2011).
    [CrossRef]
  4. C. Koebele, M. Salsi, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, and G. Charlet, Opt. Express 19, 16593 (2011).
    [CrossRef]
  5. A. A. Amin, A. Li, S. Chen, X. Chen, G. Gao, and W. Shieh, Opt. Express 19, 16672 (2011).
    [CrossRef]
  6. S. Fan and J. M. Kahn, Opt. Lett. 30, 135 (2005).
    [CrossRef]
  7. M. B. Shemirani, W. Mao, R. A. Panicker, and J. M. Kahn, J. Lightwave Technol. 27, 1248 (2009).
    [CrossRef]
  8. H. E. Rowe, Electromagnetic Propagation in Multi-Mode Random Media (Wiley, 1999).
  9. J. Dacles-Mariani and G. Rodrigue, J. Opt. Soc. Am. B 23, 1743 (2006).
    [CrossRef]

2011

2010

2009

2006

2005

Amin, A. A.

Astruc, M.

Bai, N.

Bigo, S.

Boutin, A.

Brindel, P.

Cerou, F.

Charlet, G.

Chen, S.

Chen, X.

Dacles-Mariani, J.

Fan, S.

Gao, G.

Ho, K.

Kahn, J. M.

Koebele, C.

Li, A.

Li, G.

Mao, W.

Mardoyan, H.

Panicker, R. A.

Provost, L.

Rodrigue, G.

Rowe, H. E.

H. E. Rowe, Electromagnetic Propagation in Multi-Mode Random Media (Wiley, 1999).

Salsi, M.

Shemirani, M. B.

Shieh, W.

Sillard, P.

Sperti, D.

Tran, P.

Verluise, F.

Wang, T.

Yaman, F.

Zhu, B.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Mode intensity distributions of two degenerate LP11 modes with different polarization directions: (a) LP11a x-pol.; (b) LP11a y-pol.; (c) LP11b x-pol.; and (d) LP11b y-pol.

Fig. 2.
Fig. 2.

For the given dual-LP11 and dual-polarization transmission, (a) the impulse response h(t) and bandwidth B for the PDPMs over a 1 km step-index FMF (a=14μm, Δ=0.3%) composed of independent fiber sections and (b) illustration of the PDPMs over FMFs.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

I(z)=[Eax(z)Eay(z)Ebx(z)Eby(z)]T.
I(z)=[Γ(z)+jc(z)C]I(z),
Γ(z)=[Γax(z)0000Γbx(z)0000Γay(z)0000Γby(z)],
C=[0Cax,ayCax,bxCax,byCay,ax0Cay,bxCay,byCbx,axCbx,ay0Cbx,byCby,axCby,ayCby,bx0].
{|Δz[αi(z)αk(z)]dz|1,|Δz[βi(z)βk(z)]dz|2π,i,k=ax,ay,bx,by,andik.
I(Δz)=eγ⃗·ejcC·I(0),γ⃗=0ΔzΓ(z)dz,c=0Δzc(z)dz.
H(i)=eγ⃗(i)·ejc(i)C=[e0ΔzΓa(i)dz00e0ΔzΓb(i)dz][ejc(i)Caejc(i)C0ejc(i)C1ejc(i)Cb]=[Ha(i)e0ΔzΓa(i)dz·ejc(i)C0e0ΔzΓb(i)dz·ejc(i)C1Hb(i)],
H(a,b)(i)=e0ΔzΓ(a,b)(i)dz·ejc(i)C(a,b),e0ΔzΓ(a,b)(i)dz=[e0ΔzΓ(a,b)x(i)dz00e0ΔzΓ(a,b)y(i)dz],
ejc(i)C(a,b)=[0ejc(i)C(a,b)x,(a,b)yejc(i)C(a,b)x,(a,b)y0],
ejc(i)C0=[0ejc(i)Cax,byejc(i)Cay,bx0],ejc(i)C1=[0ejc(i)Cbx,ayejc(i)Cby,ax0].
E1,2=η1,2ejφ1,2ε1,2,
E2=E2[(η2/η2)+jφ2]+η2ejφ2ε2,
T(ω)=qH(q)=[Aa(q)C0(q)C1(q)Ab(q)],
A(a,b)(q)=qH(a,b)(q)+qH(a,b)(q)q1e0ΔzΓa(i)dzejc(i)C0e0ΔzΓb(k)dzejc(k)C1ikq2,andi+k=q1,
C(0,1)(q)=qHa,bmHa,bne0ΔzΓ(a,b)(l)dzejc(l)C(0,1)+qe0ΔzΓa,b(q)dzejc(q)C(0,1),mnl,andm+n+l=q2.
T(ω)=[qHa(q)C0(q)C1(q)qHb(q)]=eϕ(ω)U(ω),
T(ω)=eϕ(ω)U(ω)=eϕ(ω)[u1u20u3u2*u1*u300u3*u1u2u3*0u2*u1*].
E2=T(ω)E1=eϕ(ω)[ϕ(ω)U(ω)+U(ω)]E1,
η2ejφ2ε2=eϕ(ω)[U(ω)jkU(ω)]E1,k=φ2+(βη2/η2)j.
[U(ω)jkn(ω)U(ω)]ε(n)=[H(ω)jkn(ω)I4]U(ω)ε(n)=0,
kn=±j|u1|2+|u2|2+|u3|2±2|u3||u1|2+|u2|2.
h(t)=n|Ain|ε(n)|2δ(tτn),

Metrics