Abstract

Integrated polarization rotators are known to exhibit stringent fabrication tolerances, which severely handicap their practical application. Here we present a general polarization rotator scheme that enables both the compensation of fabrication errors and wavelength tunability. The scheme is described analytically, and a condition for perfect polarization conversion is established. Simulations of a silicon-on-insulator polarization rotator show polarization extinction ratios in excess of 40  dB even in the presence of large fabrication errors that in a conventional rotator configuration degrade the extinction ratio to below 5  dB. Additionally, wavelength tuning over ±30nm is shown.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Halir, G. Roelkens, A. Ortega-Moñux, and J. G. Wangüemert-Pérez, Opt. Lett. 36, 178 (2011).
    [CrossRef]
  2. T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kärtner, E. Ippen, and H. Smith, Nat. Photon. 1, 57 (2007).
    [CrossRef]
  3. E. Ip, A. Lau, D. Barros, and J. Kahn, Opt. Express 16, 753 (2008).
    [CrossRef]
  4. H. Deng, D. Yevick, C. Brooks, and P. Jessop, J. Lightwave Technol. 23, 432 (2005).
    [CrossRef]
  5. D. Vermeulen, S. Selvaraja, P. Verheyen, W. Bogaerts, D. Van Thourhout, and G. Roelkens, in Group IV Photonics (IEEE, 2010), p. 42.
  6. C. Alonso-Ramos, S. Romero-García, A. Ortega-Moñux, I. Molina-Fernández, R. Zhang, H. Bach, and M. Schell, Opt. Lett. 37, 335 (2012).
    [CrossRef]
  7. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, Opt. Lett. 36, 1059 (2011).
    [CrossRef]
  8. D. Dai and J. E. Bowers, Opt. Express 19, 10940 (2011).
    [CrossRef]
  9. M. Kotlyar, L. Bolla, M. Midrio, L. O’Faolain, and T. Krauss, Opt. Express 13, 5040 (2005).
    [CrossRef]
  10. A. Velasco, M. L. Calvo, P. Cheben, A. Ortega-Moñux, J. H. Schmid, C. Ramos, Í. M. Fernandez, J. Lapointe, M. Vachon, S. Janz, and D.-X. Xu, Opt. Lett. 37, 365 (2012).
    [CrossRef]
  11. H. Deng, D. Yevick, C. Brooks, and P. Jessop, J. Opt. Soc. Am. A 23, 1741 (2006).
    [CrossRef]
  12. J. Schmid, M. Ibrahim, P. Cheben, J. Lapointe, S. Janz, P. Bock, A. Densmore, B. Lamontagne, R. Ma, W. Ye, and D.-X. Xu, Opt. Lett. 36, 2110 (2011).
    [CrossRef]
  13. A. Densmore, S. Janz, R. Ma, J. Schmid, D.-X. Xu, A. Delâge, J. Lapointe, M. Vachon, and P. Cheben, Opt. Express 17, 10457 (2009).
    [CrossRef]
  14. Y. Inoue, K. Katoh, and M. Kawachi, IEEE Photon. Technol. Lett. 4, 36 (1992).
    [CrossRef]
  15. J. van der Tol, L. Augustin, U. Khalique, and M. Smit, in Proceedings of 13th Micro Optic Conference (IEEE, 2007), p. C1.
  16. J.-W. Kim, S.-H. Park, W.-S. Chu, and M.-C. Oh, Opt. Express 20, 12443 (2012).
    [CrossRef]

2012

2011

2009

2008

2007

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kärtner, E. Ippen, and H. Smith, Nat. Photon. 1, 57 (2007).
[CrossRef]

2006

2005

1992

Y. Inoue, K. Katoh, and M. Kawachi, IEEE Photon. Technol. Lett. 4, 36 (1992).
[CrossRef]

Alonso-Ramos, C.

Augustin, L.

J. van der Tol, L. Augustin, U. Khalique, and M. Smit, in Proceedings of 13th Micro Optic Conference (IEEE, 2007), p. C1.

Bach, H.

Barros, D.

Barwicz, T.

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kärtner, E. Ippen, and H. Smith, Nat. Photon. 1, 57 (2007).
[CrossRef]

Bock, P.

Bogaerts, W.

D. Vermeulen, S. Selvaraja, P. Verheyen, W. Bogaerts, D. Van Thourhout, and G. Roelkens, in Group IV Photonics (IEEE, 2010), p. 42.

Bolla, L.

Bowers, J. E.

Brooks, C.

Calvo, M. L.

Cheben, P.

Chu, W.-S.

Dai, D.

Delâge, A.

Deng, H.

Densmore, A.

Ding, Y.

Fernandez, Í. M.

Halir, R.

Hvam, J. M.

Ibrahim, M.

Inoue, Y.

Y. Inoue, K. Katoh, and M. Kawachi, IEEE Photon. Technol. Lett. 4, 36 (1992).
[CrossRef]

Ip, E.

Ippen, E.

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kärtner, E. Ippen, and H. Smith, Nat. Photon. 1, 57 (2007).
[CrossRef]

Janz, S.

Jessop, P.

Kahn, J.

Kärtner, F.

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kärtner, E. Ippen, and H. Smith, Nat. Photon. 1, 57 (2007).
[CrossRef]

Katoh, K.

Y. Inoue, K. Katoh, and M. Kawachi, IEEE Photon. Technol. Lett. 4, 36 (1992).
[CrossRef]

Kawachi, M.

Y. Inoue, K. Katoh, and M. Kawachi, IEEE Photon. Technol. Lett. 4, 36 (1992).
[CrossRef]

Khalique, U.

J. van der Tol, L. Augustin, U. Khalique, and M. Smit, in Proceedings of 13th Micro Optic Conference (IEEE, 2007), p. C1.

Kim, J.-W.

Kotlyar, M.

Krauss, T.

Lamontagne, B.

Lapointe, J.

Lau, A.

Liu, L.

Ma, R.

Midrio, M.

Molina-Fernández, I.

O’Faolain, L.

Oh, M.-C.

Ortega-Moñux, A.

Park, S.-H.

Popovic, M.

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kärtner, E. Ippen, and H. Smith, Nat. Photon. 1, 57 (2007).
[CrossRef]

Rakich, P.

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kärtner, E. Ippen, and H. Smith, Nat. Photon. 1, 57 (2007).
[CrossRef]

Ramos, C.

Roelkens, G.

R. Halir, G. Roelkens, A. Ortega-Moñux, and J. G. Wangüemert-Pérez, Opt. Lett. 36, 178 (2011).
[CrossRef]

D. Vermeulen, S. Selvaraja, P. Verheyen, W. Bogaerts, D. Van Thourhout, and G. Roelkens, in Group IV Photonics (IEEE, 2010), p. 42.

Romero-García, S.

Schell, M.

Schmid, J.

Schmid, J. H.

Selvaraja, S.

D. Vermeulen, S. Selvaraja, P. Verheyen, W. Bogaerts, D. Van Thourhout, and G. Roelkens, in Group IV Photonics (IEEE, 2010), p. 42.

Smit, M.

J. van der Tol, L. Augustin, U. Khalique, and M. Smit, in Proceedings of 13th Micro Optic Conference (IEEE, 2007), p. C1.

Smith, H.

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kärtner, E. Ippen, and H. Smith, Nat. Photon. 1, 57 (2007).
[CrossRef]

Socci, L.

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kärtner, E. Ippen, and H. Smith, Nat. Photon. 1, 57 (2007).
[CrossRef]

Vachon, M.

van der Tol, J.

J. van der Tol, L. Augustin, U. Khalique, and M. Smit, in Proceedings of 13th Micro Optic Conference (IEEE, 2007), p. C1.

Van Thourhout, D.

D. Vermeulen, S. Selvaraja, P. Verheyen, W. Bogaerts, D. Van Thourhout, and G. Roelkens, in Group IV Photonics (IEEE, 2010), p. 42.

Velasco, A.

Verheyen, P.

D. Vermeulen, S. Selvaraja, P. Verheyen, W. Bogaerts, D. Van Thourhout, and G. Roelkens, in Group IV Photonics (IEEE, 2010), p. 42.

Vermeulen, D.

D. Vermeulen, S. Selvaraja, P. Verheyen, W. Bogaerts, D. Van Thourhout, and G. Roelkens, in Group IV Photonics (IEEE, 2010), p. 42.

Wangüemert-Pérez, J. G.

Watts, M.

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kärtner, E. Ippen, and H. Smith, Nat. Photon. 1, 57 (2007).
[CrossRef]

Xu, D.-X.

Ye, W.

Yevick, D.

Yvind, K.

Zhang, R.

IEEE Photon. Technol. Lett.

Y. Inoue, K. Katoh, and M. Kawachi, IEEE Photon. Technol. Lett. 4, 36 (1992).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

Nat. Photon.

T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kärtner, E. Ippen, and H. Smith, Nat. Photon. 1, 57 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Other

D. Vermeulen, S. Selvaraja, P. Verheyen, W. Bogaerts, D. Van Thourhout, and G. Roelkens, in Group IV Photonics (IEEE, 2010), p. 42.

J. van der Tol, L. Augustin, U. Khalique, and M. Smit, in Proceedings of 13th Micro Optic Conference (IEEE, 2007), p. C1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Cross section of a slanted rotator waveguide and (b) a rotator waveguide with longitudinal trenches. (c) Schematic of a conventional polarization rotator. (d) Schematic of the proposed polarization rotator scheme.

Fig. 2.
Fig. 2.

(a) Graphical representation of condition (2) for perfect polarization rotation; (b) Poincaré-sphere plot of a perfect rotation with a polarization axis at θ=20° using our rotator scheme.

Fig. 3.
Fig. 3.

ER of a conventional rotator and the proposed rotator scheme for various fabrication variations at λ=1.55μm. Temperatures increments (ΔT1, ΔT2) to achieve compensation are A, (16.5 °C, 16.1 °C); B, (25.9 °C, 10.4 °C); C, (31 °C, 9.3 °C); D, (33.2 °C, 8.7 °C); E, (12.3 °C, 37.1 °C); F, (2.6 °C, 17.2 °C); G, (19.8 °C, 2.1 °C).

Tables (1)

Tables Icon

Table 1. ER for Different Operational Wavelengths in a Conventional Rotator (ER conv.) and in Our Approach (ER comp.) with ΔG=+5%

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A(θ)=(cosθsinθsinθcosθ),D(ϕ)=(exp(jϕ)001),
sin2(2θ)sin2(ϕ/2)>14.

Metrics