Abstract

We demonstrate the generation of mid-infrared radiation using a femtosecond dual-signal-wavelength optical parametric oscillator and difference frequency generation in an extracavity gallium selenide or silver gallium diselenide crystal. This system generates up to 4.3 mW of average mid-infrared power. Its spectra can be tuned to between 10.5 μm and 16.5 μm wavelength (952cm1606cm1) with more than 50cm1 spectral bandwidth. We demonstrate that the power and spectra of this system are temporally very stable.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Waynant, I. K. Ilev, and I. Gannot, Phil. Trans. R. Soc. Lond. A 359, 635 (2001).
    [CrossRef]
  2. S. Amarie and F. Keilmann, Phys. Rev. B 83, 045404 (2011).
    [CrossRef]
  3. S. Marzenell, R. Beigang, and R. Wallenstein, Appl. Phys. B 69, 423 (1999).
    [CrossRef]
  4. M. Marangoni, R. Osellane, R. Ramponi, G. Cerullo, A. Steinmann, and U. Morgner, Opt. Lett. 32, 1489 (2007).
    [CrossRef]
  5. G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
    [CrossRef]
  6. C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, and U. Keller, Opt. Lett. 32, 1138 (2007).
    [CrossRef]
  7. S. Ehret and H. Schneider, Appl. Phys. B 66, 27 (1998).
    [CrossRef]
  8. A. M. Al-Kadry and D. Strickland, Opt. Lett. 36, 1080 (2011).
    [CrossRef]
  9. K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
    [CrossRef]
  10. G. K. Samanta and M. Ebrahim-Zadeh, Opt. Lett. 36, 3033 (2011).
    [CrossRef]
  11. K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taninchi, and H. Ito, Opt. Lett. 25, 1714 (2000).
    [CrossRef]
  12. P. Zhao, S. Ragam, Y. J. Ding, I. B. Zotova, X. Mu, H.-C. Lee, S. K. Meissner, and H. Meissner, Opt. Lett. 37, 1283 (2012).
    [CrossRef]
  13. T. Südmeyer, J. Aus der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, Opt. Lett. 26, 304 (2001).
    [CrossRef]
  14. R. Hegenbarth, A. Steinmann, G. Tóth, J. Hebling, and H. Giessen, J. Opt. Soc. Am. B 28, 1344 (2011).
    [CrossRef]
  15. A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThAA5.
  16. K. L. Vodopyanov, J. Opt. Soc. Am. B 10, 1723 (1993).
    [CrossRef]

2012 (1)

2011 (4)

2007 (2)

2003 (1)

G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
[CrossRef]

2001 (2)

2000 (1)

1999 (1)

S. Marzenell, R. Beigang, and R. Wallenstein, Appl. Phys. B 69, 423 (1999).
[CrossRef]

1998 (1)

S. Ehret and H. Schneider, Appl. Phys. B 66, 27 (1998).
[CrossRef]

1997 (1)

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
[CrossRef]

1993 (1)

Adler, F.

Al-Kadry, A. M.

Amarie, S.

S. Amarie and F. Keilmann, Phys. Rev. B 83, 045404 (2011).
[CrossRef]

Arbore, M. A.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
[CrossRef]

Aus der Au, J.

Beigang, R.

S. Marzenell, R. Beigang, and R. Wallenstein, Appl. Phys. B 69, 423 (1999).
[CrossRef]

Biegert, J.

Burr, K. C.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
[CrossRef]

Cerullo, G.

De Silvestri, S.

G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
[CrossRef]

Ding, Y. J.

Ebrahim-Zadeh, M.

Ehret, S.

S. Ehret and H. Schneider, Appl. Phys. B 66, 27 (1998).
[CrossRef]

Erny, C.

Fejer, M. M.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
[CrossRef]

Gannot, I.

R. W. Waynant, I. K. Ilev, and I. Gannot, Phil. Trans. R. Soc. Lond. A 359, 635 (2001).
[CrossRef]

Giessen, H.

R. Hegenbarth, A. Steinmann, G. Tóth, J. Hebling, and H. Giessen, J. Opt. Soc. Am. B 28, 1344 (2011).
[CrossRef]

A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThAA5.

Hanna, D. C.

Hatanaka, T.

Hebling, J.

Hegenbarth, R.

R. Hegenbarth, A. Steinmann, G. Tóth, J. Hebling, and H. Giessen, J. Opt. Soc. Am. B 28, 1344 (2011).
[CrossRef]

A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThAA5.

Ilev, I. K.

R. W. Waynant, I. K. Ilev, and I. Gannot, Phil. Trans. R. Soc. Lond. A 359, 635 (2001).
[CrossRef]

Ito, H.

Kawase, K.

Keilmann, F.

S. Amarie and F. Keilmann, Phys. Rev. B 83, 045404 (2011).
[CrossRef]

Keller, U.

Kühlke, D.

Lee, H.-C.

Leitenstorfer, A.

Marangoni, M.

Marzenell, S.

S. Marzenell, R. Beigang, and R. Wallenstein, Appl. Phys. B 69, 423 (1999).
[CrossRef]

Meissner, H.

Meissner, S. K.

Metzger, B.

A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThAA5.

Morgner, U.

Moutzouris, K.

Mu, X.

Nakamura, K.

Osellane, R.

Paschotta, R.

Ragam, S.

Ramponi, R.

Ross, G. W.

Samanta, G. K.

Schneider, H.

S. Ehret and H. Schneider, Appl. Phys. B 66, 27 (1998).
[CrossRef]

Smith, P. G. R.

Steinmann, A.

R. Hegenbarth, A. Steinmann, G. Tóth, J. Hebling, and H. Giessen, J. Opt. Soc. Am. B 28, 1344 (2011).
[CrossRef]

M. Marangoni, R. Osellane, R. Ramponi, G. Cerullo, A. Steinmann, and U. Morgner, Opt. Lett. 32, 1489 (2007).
[CrossRef]

A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThAA5.

Strickland, D.

Südmeyer, T.

Takahashi, H.

Tang, C. L.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
[CrossRef]

Taninchi, T.

Tóth, G.

Vodopyanov, K. L.

Wallenstein, R.

S. Marzenell, R. Beigang, and R. Wallenstein, Appl. Phys. B 69, 423 (1999).
[CrossRef]

Waynant, R. W.

R. W. Waynant, I. K. Ilev, and I. Gannot, Phil. Trans. R. Soc. Lond. A 359, 635 (2001).
[CrossRef]

Zhao, P.

Zotova, I. B.

Appl. Phys. B (2)

S. Marzenell, R. Beigang, and R. Wallenstein, Appl. Phys. B 69, 423 (1999).
[CrossRef]

S. Ehret and H. Schneider, Appl. Phys. B 66, 27 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, Appl. Phys. Lett. 70, 3341 (1997).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (7)

Phil. Trans. R. Soc. Lond. A (1)

R. W. Waynant, I. K. Ilev, and I. Gannot, Phil. Trans. R. Soc. Lond. A 359, 635 (2001).
[CrossRef]

Phys. Rev. B (1)

S. Amarie and F. Keilmann, Phys. Rev. B 83, 045404 (2011).
[CrossRef]

Rev. Sci. Instrum. (1)

G. Cerullo and S. De Silvestri, Rev. Sci. Instrum. 74, 1 (2003).
[CrossRef]

Other (1)

A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThAA5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup for difference frequency generation into the mid-IR spectral region. Dual-signal-wavelength OPO, pumped by an Yb:KGW oscillator, delivers two different signal wavelengths simultaneously in one output beam. The polarization of the shorter wavelength is rotated by 90° to achieve Type II phase matching in the conversion crystal (GaSe or AgGaSe2).

Fig. 2.
Fig. 2.

(a) Average power versus wavelength in the mid-IR region with a 1 mm long GaSe crystal and identical polarizations of both OPO signal wavelengths (black squares), with a 2 mm long GaSe crystal and different signal polarizations (red circles), and with a 3 mm long AgGaSe2 crystal and different signal polarizations (blue triangles). Lines are added as a guide to the eye. The maximum power (4.3 mW) is generated at 13.2 μm (758cm1) with 3 mm AgGaSe2. The power exceeds 0.5 mW in the whole tuning range. (b) Mid-IR spectra, obtained with 1 mm GaSe, are tunable to between 10.5 μm (952cm1) and 16.5 μm (606cm1) with spectral widths larger than 50cm1. (c) Corresponding OPO signal spectra with two wavelength peaks.

Fig. 3.
Fig. 3.

OPO signal power (a) and spectral (b) stability measurements for 1 h. In this example, the DFG wavelength is 15.16 μm (660cm1). OPO signal power noise is equal to 0.8% RMS. Gray lines are added around the shorter wavelength peak to highlight its spectral stability. RMS center wavelength fluctuations of the two signals are 0.06% and 0.01%, respectively.

Fig. 4.
Fig. 4.

Mid-IR power (a) and spectral (b) stability measurements for 1 h at 11.9 μm wavelength (840cm1). In this case the power noise is equal to 4.1% RMS and the center wavelength fluctuations are equal to 0.54% RMS. Mid-IR power (c) and spectral (d) stability measurements for 1 h at 14.3 μm (700cm1). In this case the power noise is equal to 4.8% RMS and the center wavelength fluctuations are equal to 0.35% RMS. These are two examples for the stability of the mid-IR output. The stability is comparable at other wavelengths. The spectra are obtained with 1 mm GaSe.

Metrics