Abstract

Metallic rugate structures are theoretically investigated for achieving near-perfect absorption in the visible and near-infrared regions. Our model builds on nanoporous metal films whose porosity (volume fraction of voids) follows a sinewave along the film thickness. By setting the initial phase of porosity at the top surface as 0, near-perfect absorption is obtained. The impacts of various structural parameters on the characteristic absorption behaviors are studied. Furthermore, multiple peaks or bands with high absorption can be achieved by integrating several periodicities in one structure. The rugate absorbers show near-perfect absorption for TE and TM polarizations and large incident angles.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. G. Bovard, Appl. Opt. 32, 5427 (1993).
    [CrossRef]
  2. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).
    [CrossRef]
  3. M. Diem, T. Koschny, and C. M. Soukoulis, Phys. Rev. B 79, 033101 (2009).
    [CrossRef]
  4. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
    [CrossRef]
  5. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, Nature 416, 61 (2002).
    [CrossRef]
  6. B. X. Zhang, Y. H. Zhao, Q. Z. Hao, B. Kiraly, I. C. Khoo, S. F. Chen, and T. J. Huang, Opt. Express 19, 15221 (2011).
    [CrossRef]
  7. S. Q. Chen, H. Cheng, H. F. Yang, J. J. Li, X. Y. Duan, C. Z. Gu, and J. G. Tian, Appl. Phys. Lett. 99, 253104 (2011).
    [CrossRef]
  8. C. K. Tsang, Z. T. Xu, and Y. Y. Li, J. Electrochem. Soc. 156, D508 (2009).
    [CrossRef]
  9. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  10. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, Appl. Opt. 22, 1099 (1983).
    [CrossRef]
  11. F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, 1965).

2011 (2)

S. Q. Chen, H. Cheng, H. F. Yang, J. J. Li, X. Y. Duan, C. Z. Gu, and J. G. Tian, Appl. Phys. Lett. 99, 253104 (2011).
[CrossRef]

B. X. Zhang, Y. H. Zhao, Q. Z. Hao, B. Kiraly, I. C. Khoo, S. F. Chen, and T. J. Huang, Opt. Express 19, 15221 (2011).
[CrossRef]

2010 (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).
[CrossRef]

2009 (2)

M. Diem, T. Koschny, and C. M. Soukoulis, Phys. Rev. B 79, 033101 (2009).
[CrossRef]

C. K. Tsang, Z. T. Xu, and Y. Y. Li, J. Electrochem. Soc. 156, D508 (2009).
[CrossRef]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

2002 (1)

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, Nature 416, 61 (2002).
[CrossRef]

1993 (1)

1983 (1)

1972 (1)

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Alexander, R. W.

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bovard, B. G.

Carminati, R.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, Nature 416, 61 (2002).
[CrossRef]

Chen, S. F.

Chen, S. Q.

S. Q. Chen, H. Cheng, H. F. Yang, J. J. Li, X. Y. Duan, C. Z. Gu, and J. G. Tian, Appl. Phys. Lett. 99, 253104 (2011).
[CrossRef]

Chen, Y.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, Nature 416, 61 (2002).
[CrossRef]

Cheng, H.

S. Q. Chen, H. Cheng, H. F. Yang, J. J. Li, X. Y. Duan, C. Z. Gu, and J. G. Tian, Appl. Phys. Lett. 99, 253104 (2011).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Duan, X. Y.

S. Q. Chen, H. Cheng, H. F. Yang, J. J. Li, X. Y. Duan, C. Z. Gu, and J. G. Tian, Appl. Phys. Lett. 99, 253104 (2011).
[CrossRef]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).
[CrossRef]

Greffet, J. J.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, Nature 416, 61 (2002).
[CrossRef]

Gu, C. Z.

S. Q. Chen, H. Cheng, H. F. Yang, J. J. Li, X. Y. Duan, C. Z. Gu, and J. G. Tian, Appl. Phys. Lett. 99, 253104 (2011).
[CrossRef]

Hao, Q. Z.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).
[CrossRef]

Huang, T. J.

Johnson, P. B.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Joulain, K.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, Nature 416, 61 (2002).
[CrossRef]

Khoo, I. C.

Kiraly, B.

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Li, J. J.

S. Q. Chen, H. Cheng, H. F. Yang, J. J. Li, X. Y. Duan, C. Z. Gu, and J. G. Tian, Appl. Phys. Lett. 99, 253104 (2011).
[CrossRef]

Li, Y. Y.

C. K. Tsang, Z. T. Xu, and Y. Y. Li, J. Electrochem. Soc. 156, D508 (2009).
[CrossRef]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).
[CrossRef]

Long, L. L.

Mainguy, S. P.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, Nature 416, 61 (2002).
[CrossRef]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).
[CrossRef]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Mulet, J. P.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, Nature 416, 61 (2002).
[CrossRef]

Ordal, M. A.

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Reif, F.

F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, 1965).

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Soukoulis, C. M.

M. Diem, T. Koschny, and C. M. Soukoulis, Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Tian, J. G.

S. Q. Chen, H. Cheng, H. F. Yang, J. J. Li, X. Y. Duan, C. Z. Gu, and J. G. Tian, Appl. Phys. Lett. 99, 253104 (2011).
[CrossRef]

Tsang, C. K.

C. K. Tsang, Z. T. Xu, and Y. Y. Li, J. Electrochem. Soc. 156, D508 (2009).
[CrossRef]

Ward, C. A.

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).
[CrossRef]

Xu, Z. T.

C. K. Tsang, Z. T. Xu, and Y. Y. Li, J. Electrochem. Soc. 156, D508 (2009).
[CrossRef]

Yang, H. F.

S. Q. Chen, H. Cheng, H. F. Yang, J. J. Li, X. Y. Duan, C. Z. Gu, and J. G. Tian, Appl. Phys. Lett. 99, 253104 (2011).
[CrossRef]

Zhang, B. X.

Zhao, Y. H.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

S. Q. Chen, H. Cheng, H. F. Yang, J. J. Li, X. Y. Duan, C. Z. Gu, and J. G. Tian, Appl. Phys. Lett. 99, 253104 (2011).
[CrossRef]

J. Electrochem. Soc. (1)

C. K. Tsang, Z. T. Xu, and Y. Y. Li, J. Electrochem. Soc. 156, D508 (2009).
[CrossRef]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).
[CrossRef]

Nature (1)

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, Nature 416, 61 (2002).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (2)

M. Diem, T. Koschny, and C. M. Soukoulis, Phys. Rev. B 79, 033101 (2009).
[CrossRef]

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Other (1)

F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Structural model of metal-based rugate structures used in the SMM.

Fig. 2.
Fig. 2.

Normal incident absorption spectra of Ni-based rugate structures with different initial phase of porosity at the top film surface, φ (pa=40%, A=10%, d=200nm, and m=16).

Fig. 3.
Fig. 3.

Normal incident absorption spectra of a Ni rugate absorber (d=200nm, pa=40%, A=10%, and m=16). The following parameters are studied: (a) d, ranging from 200 nm to 240 nm; (b) pa, ranging from 40% to 70%; (c) A, ranging from 5% to 20%; (d) m, ranging from 1 to 32; (e) refractive index n of the material filling the pores, changed from 1 to 1.05.

Fig. 4.
Fig. 4.

Absorption spectra of a Ni rugate absorber (d=200nm, pa=40%, A=10%, and m=16) with TE and TM polarizations and different incident angles.

Fig. 5.
Fig. 5.

Normal incident absorption spectra of a dual rugate absorber constructed following Eq. (4) and their component single rugate absorbers calculated using the FDTD method: Ni-based, d1=150nm, d2=300nm, ddual=300nm, pa=40%, A=10%, and m=16.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

p=pa+Asin(2πz/d+φ)
pi=zi1zi(pa+Asin(2πz/d))dzd/j,(i=1,2,,j),
εeffεairεeff+2εair=(1pi)εmetalεairεmetal+2εair.
pdual=0.5*(pa+Asin(2πz/d1))+0.5*(pa+Asin(2πz/d2)).

Metrics