Abstract

We demonstrate an all-fiber-integrated Er-doped fiber laser operating in the soliton–similariton mode-locking regime. In the similariton part of the cavity, a self-similarly evolving parabolic pulse with highly linear chirp propagates in the presence of normal dispersion. Following an in-line fiber-based birefringent filter, the pulse evolves into a soliton in the part of the cavity with anomalous dispersion. The similariton and the soliton pulses are dechirped to 75.5 and 167.2 fs, respectively, outside of the cavity. Mode-locked operation is very robust, owing to the influence of the two similariton and soliton attractors that predominate each half of the laser cavity. The experimental results are supported with numerical simulations, which provide good agreement.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Renninger, A. Chong, and F. W. Wise, IEEE J. Sel. Top. Quantum Electron. 18, 389 (2012).
    [CrossRef]
  2. I. N. Duling, Electron. Lett. 27, 544 (1991).
    [CrossRef]
  3. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, Opt. Lett. 18, 1080 (1993).
    [CrossRef]
  4. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
    [CrossRef]
  5. A. Chong, J. Buckley, W. Renninger, and F. W. Wise, Opt. Express 14, 10095 (2006).
    [CrossRef]
  6. B. Oktem, C. Ülgüdür, and F.Ö. Ilday, Nat. Photon. 4, 307 (2010).
    [CrossRef]
  7. W. H. Renninger, A. Chong, and F. W. Wise, Phys. Rev. A 82, 021805 (2010).
    [CrossRef]
  8. J. R. Buckley, F. Ö. Ilday, and F. W. Wise, Opt. Lett. 30, 1888 (2005).
    [CrossRef]
  9. K. Özgören and F. Ö. Ilday, Opt. Lett. 35, 1296 (2010).
    [CrossRef]
  10. K. M. Spaulding, D. H. Yong, A. D. Kim, and J. N. Kutz, J. Opt. Soc. Am. B 19, 1045 (2002).
    [CrossRef]
  11. J. W. Nicholson, J. Jasapara, W. Rudolph, F. G. Omenetto, and A. J. Taylor, Opt. Lett. 24, 1774 (1999).
    [CrossRef]
  12. V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, Opt. Lett. 25, 1753 (2000).
    [CrossRef]
  13. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
    [CrossRef]
  14. I. L. Budunolu, C. Ülgüdür, B. Oktem, and F. Ö. Ilday, Opt. Lett. 34, 2516 (2009).
    [CrossRef]

2012 (1)

W. H. Renninger, A. Chong, and F. W. Wise, IEEE J. Sel. Top. Quantum Electron. 18, 389 (2012).
[CrossRef]

2010 (3)

B. Oktem, C. Ülgüdür, and F.Ö. Ilday, Nat. Photon. 4, 307 (2010).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, Phys. Rev. A 82, 021805 (2010).
[CrossRef]

K. Özgören and F. Ö. Ilday, Opt. Lett. 35, 1296 (2010).
[CrossRef]

2009 (1)

2006 (1)

2005 (1)

2004 (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef]

2002 (1)

2000 (2)

V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, Opt. Lett. 25, 1753 (2000).
[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef]

1999 (1)

1993 (1)

1991 (1)

I. N. Duling, Electron. Lett. 27, 544 (1991).
[CrossRef]

Buckley, J.

Buckley, J. R.

J. R. Buckley, F. Ö. Ilday, and F. W. Wise, Opt. Lett. 30, 1888 (2005).
[CrossRef]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef]

Budunolu, I. L.

Chong, A.

W. H. Renninger, A. Chong, and F. W. Wise, IEEE J. Sel. Top. Quantum Electron. 18, 389 (2012).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, Phys. Rev. A 82, 021805 (2010).
[CrossRef]

A. Chong, J. Buckley, W. Renninger, and F. W. Wise, Opt. Express 14, 10095 (2006).
[CrossRef]

Clark, W. G.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef]

Dudley, J. M.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef]

V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, Opt. Lett. 25, 1753 (2000).
[CrossRef]

Duling, I. N.

I. N. Duling, Electron. Lett. 27, 544 (1991).
[CrossRef]

Fermann, M. E.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef]

Harvey, J. D.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef]

V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, Opt. Lett. 25, 1753 (2000).
[CrossRef]

Haus, H. A.

Ilday, F. Ö.

Ilday, F.Ö.

B. Oktem, C. Ülgüdür, and F.Ö. Ilday, Nat. Photon. 4, 307 (2010).
[CrossRef]

Ippen, E. P.

Jasapara, J.

Kim, A. D.

Kruglov, V. I.

V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, Opt. Lett. 25, 1753 (2000).
[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef]

Kutz, J. N.

Nelson, L. E.

Nicholson, J. W.

Oktem, B.

B. Oktem, C. Ülgüdür, and F.Ö. Ilday, Nat. Photon. 4, 307 (2010).
[CrossRef]

I. L. Budunolu, C. Ülgüdür, B. Oktem, and F. Ö. Ilday, Opt. Lett. 34, 2516 (2009).
[CrossRef]

Omenetto, F. G.

Özgören, K.

Peacock, A. C.

Renninger, W.

Renninger, W. H.

W. H. Renninger, A. Chong, and F. W. Wise, IEEE J. Sel. Top. Quantum Electron. 18, 389 (2012).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, Phys. Rev. A 82, 021805 (2010).
[CrossRef]

Rudolph, W.

Spaulding, K. M.

Tamura, K.

Taylor, A. J.

Thomsen, B. C.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef]

Ülgüdür, C.

B. Oktem, C. Ülgüdür, and F.Ö. Ilday, Nat. Photon. 4, 307 (2010).
[CrossRef]

I. L. Budunolu, C. Ülgüdür, B. Oktem, and F. Ö. Ilday, Opt. Lett. 34, 2516 (2009).
[CrossRef]

Wise, F. W.

W. H. Renninger, A. Chong, and F. W. Wise, IEEE J. Sel. Top. Quantum Electron. 18, 389 (2012).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, Phys. Rev. A 82, 021805 (2010).
[CrossRef]

A. Chong, J. Buckley, W. Renninger, and F. W. Wise, Opt. Express 14, 10095 (2006).
[CrossRef]

J. R. Buckley, F. Ö. Ilday, and F. W. Wise, Opt. Lett. 30, 1888 (2005).
[CrossRef]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef]

Yong, D. H.

Electron. Lett. (1)

I. N. Duling, Electron. Lett. 27, 544 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

W. H. Renninger, A. Chong, and F. W. Wise, IEEE J. Sel. Top. Quantum Electron. 18, 389 (2012).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photon. (1)

B. Oktem, C. Ülgüdür, and F.Ö. Ilday, Nat. Photon. 4, 307 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Phys. Rev. A (1)

W. H. Renninger, A. Chong, and F. W. Wise, Phys. Rev. A 82, 021805 (2010).
[CrossRef]

Phys. Rev. Lett. (2)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the experimental setup of the all-fiber-integrated soliton–similariton laser and (b) calculated relation between filter bandwidth and PM fiber length; symbols correspond to experimental data. Inset, optical spectrum of CW operation with wavelength spacing of 19.6 nm, corresponding to the filter bandwidth.

Fig. 2.
Fig. 2.

(a) Evolution of the spectral and temporal width of the pulse as a function of position along the cavity. Experimental (solid line) and simulated (dashed line) optical spectrum with linear vertical axis of (b) the soliton pulse, measured from the 10% coupler before the gain fiber and (c) the similariton pulse, measured from the 10% coupler after the gain fiber. Autocorrelation (solid line) of the (d) soliton and (e) similariton pulses with PICASO fitting (dotted line). (Inset) Autocorrelation of the similariton pulse after compression. Pulse shape (solid line) retrieved using the PICASO algorithm and simulated temporal intensity profile (dashed line) for the (f) soliton and (g) similariton pulses with sech 2 ( t ) and parabolic fitting (dotted line), respectively.

Fig. 3.
Fig. 3.

(a) Measured RF spectrum with 1 kHz span and 1 Hz resolution bandwidth, with central frequency shifted to zero for clarity. Inset, RF spectrum with 1 GHz span and 1 kHz resolution bandwidth. (b) Measured RIN (solid line) along with the noise floor (dotted line).

Metrics