Abstract

We propose and experimentally demonstrate a simple and flexible photonic scheme for generation and modulation of ultrawideband (UWB) using a phase modulator and a fiber delay interferometer (DI)-based multichannel frequency discrimination. By introducing a Gaussian signal to the phase modulator, the UWB polarity-switchable doublet pulses can be achieved by combining the pair of UWB monocycle pulses with inverted polarities at the DI outputs under proper time delay. Furthermore, the pulse shape modulation, pulse position modulation, and on–off keying can be performed by coding the electrical data patterns and adjusting the time delay between the two monocycle pulses. Only a laser source introduced in the architecture guarantees the excellent dispersion tolerance over 75 km optical fiber link for UWB pulse sequence, which has potential application in future high-speed UWB impulse radio over optical fiber access networks.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Porcino and W. Hirt, IEEE Commun. Mag. 41(7), 66 (2003).
    [CrossRef]
  2. Y. Kim, S. Kim, H. Jang, S. Hur, J. Lee, and J. Jeong, in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (IEEE, 2005), pp. 173–176.
  3. P. Ou, Y. Zhang, and C.-X. Zhang, Opt. Lett. 16, 5130 (2008).
    [CrossRef]
  4. Q. Wang and J. Yao, Opt. Lett. 33, 1017 (2008).
    [CrossRef]
  5. S. Wang, H. Chen, M. Xin, M. Chen, and S. Xie, Opt. Lett. 34, 3092 (2009).
    [CrossRef]
  6. J. Dong, Y. Yu, Y. Zhang, X. Li, D. Huang, and X. Zhang, Opt. Express 19, 10587 (2011).
    [CrossRef]
  7. X. Yu, T. B. Gibbon, and I. T. Monroy, IEEE Photon. Technol. Lett. 21, 1235 (2009).
    [CrossRef]
  8. Y. Dai and J. Yao, J. Lightwave Technol. 27, 1448 (2009).
    [CrossRef]
  9. P. Li, H. Chen, M. Chen, and S. Xie, in Proceedings of Microwave Photonics 2011 (IEEE, 2011), paper 2184.
  10. S. Pan and J. Yao, J. Lightwave Technol. 28, 2445 (2010).
    [CrossRef]
  11. F. Zeng and J. Yao, in Proceedings of IEEE Conference on International Conference on Communications, Circuits and Systems (IEEE, 2006), pp. 2024–2029.

2011 (1)

2010 (1)

2009 (3)

2008 (2)

P. Ou, Y. Zhang, and C.-X. Zhang, Opt. Lett. 16, 5130 (2008).
[CrossRef]

Q. Wang and J. Yao, Opt. Lett. 33, 1017 (2008).
[CrossRef]

2003 (1)

D. Porcino and W. Hirt, IEEE Commun. Mag. 41(7), 66 (2003).
[CrossRef]

Chen, H.

S. Wang, H. Chen, M. Xin, M. Chen, and S. Xie, Opt. Lett. 34, 3092 (2009).
[CrossRef]

P. Li, H. Chen, M. Chen, and S. Xie, in Proceedings of Microwave Photonics 2011 (IEEE, 2011), paper 2184.

Chen, M.

S. Wang, H. Chen, M. Xin, M. Chen, and S. Xie, Opt. Lett. 34, 3092 (2009).
[CrossRef]

P. Li, H. Chen, M. Chen, and S. Xie, in Proceedings of Microwave Photonics 2011 (IEEE, 2011), paper 2184.

Dai, Y.

Dong, J.

Gibbon, T. B.

X. Yu, T. B. Gibbon, and I. T. Monroy, IEEE Photon. Technol. Lett. 21, 1235 (2009).
[CrossRef]

Hirt, W.

D. Porcino and W. Hirt, IEEE Commun. Mag. 41(7), 66 (2003).
[CrossRef]

Huang, D.

Hur, S.

Y. Kim, S. Kim, H. Jang, S. Hur, J. Lee, and J. Jeong, in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (IEEE, 2005), pp. 173–176.

Jang, H.

Y. Kim, S. Kim, H. Jang, S. Hur, J. Lee, and J. Jeong, in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (IEEE, 2005), pp. 173–176.

Jeong, J.

Y. Kim, S. Kim, H. Jang, S. Hur, J. Lee, and J. Jeong, in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (IEEE, 2005), pp. 173–176.

Kim, S.

Y. Kim, S. Kim, H. Jang, S. Hur, J. Lee, and J. Jeong, in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (IEEE, 2005), pp. 173–176.

Kim, Y.

Y. Kim, S. Kim, H. Jang, S. Hur, J. Lee, and J. Jeong, in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (IEEE, 2005), pp. 173–176.

Lee, J.

Y. Kim, S. Kim, H. Jang, S. Hur, J. Lee, and J. Jeong, in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (IEEE, 2005), pp. 173–176.

Li, P.

P. Li, H. Chen, M. Chen, and S. Xie, in Proceedings of Microwave Photonics 2011 (IEEE, 2011), paper 2184.

Li, X.

Monroy, I. T.

X. Yu, T. B. Gibbon, and I. T. Monroy, IEEE Photon. Technol. Lett. 21, 1235 (2009).
[CrossRef]

Ou, P.

P. Ou, Y. Zhang, and C.-X. Zhang, Opt. Lett. 16, 5130 (2008).
[CrossRef]

Pan, S.

Porcino, D.

D. Porcino and W. Hirt, IEEE Commun. Mag. 41(7), 66 (2003).
[CrossRef]

Wang, Q.

Wang, S.

Xie, S.

S. Wang, H. Chen, M. Xin, M. Chen, and S. Xie, Opt. Lett. 34, 3092 (2009).
[CrossRef]

P. Li, H. Chen, M. Chen, and S. Xie, in Proceedings of Microwave Photonics 2011 (IEEE, 2011), paper 2184.

Xin, M.

Yao, J.

S. Pan and J. Yao, J. Lightwave Technol. 28, 2445 (2010).
[CrossRef]

Y. Dai and J. Yao, J. Lightwave Technol. 27, 1448 (2009).
[CrossRef]

Q. Wang and J. Yao, Opt. Lett. 33, 1017 (2008).
[CrossRef]

F. Zeng and J. Yao, in Proceedings of IEEE Conference on International Conference on Communications, Circuits and Systems (IEEE, 2006), pp. 2024–2029.

Yu, X.

X. Yu, T. B. Gibbon, and I. T. Monroy, IEEE Photon. Technol. Lett. 21, 1235 (2009).
[CrossRef]

Yu, Y.

Zeng, F.

F. Zeng and J. Yao, in Proceedings of IEEE Conference on International Conference on Communications, Circuits and Systems (IEEE, 2006), pp. 2024–2029.

Zhang, C.-X.

P. Ou, Y. Zhang, and C.-X. Zhang, Opt. Lett. 16, 5130 (2008).
[CrossRef]

Zhang, X.

Zhang, Y.

IEEE Commun. Mag. (1)

D. Porcino and W. Hirt, IEEE Commun. Mag. 41(7), 66 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

X. Yu, T. B. Gibbon, and I. T. Monroy, IEEE Photon. Technol. Lett. 21, 1235 (2009).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (1)

Opt. Lett. (3)

Other (3)

P. Li, H. Chen, M. Chen, and S. Xie, in Proceedings of Microwave Photonics 2011 (IEEE, 2011), paper 2184.

F. Zeng and J. Yao, in Proceedings of IEEE Conference on International Conference on Communications, Circuits and Systems (IEEE, 2006), pp. 2024–2029.

Y. Kim, S. Kim, H. Jang, S. Hur, J. Lee, and J. Jeong, in Proceedings of the IEEE International Topical Meeting on Microwave Photonics (IEEE, 2005), pp. 173–176.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

UWB pulse generation and modulation configuration.

Fig. 2.
Fig. 2.

(a) Principle of the generated optical monocycle pulses with opposite polarities at two output ports of the DI. (b) Illustration for modulation of UWB sequence.

Fig. 3.
Fig. 3.

Waveforms and spectrum of the generated monocycles. (a) Waveforms of the positive (solid line) and negative (dashed line) monocycles. (b) Corresponding electrical spectrum.

Fig. 4.
Fig. 4.

Waveforms and spectrum of the generated doublets. (a) Waveforms of the positive (solid line) and negative (dashed line) doublet pulses. (b) Corresponding electrical spectrum.

Fig. 5.
Fig. 5.

(a) The combination waveforms of the pair polarity-reversed UWB monocycles interfere with a t1 relative time delay, (b) UWB PSM coding sequence CS1 with different polarities and shapes, and (c) corresponding spectrum of the UWB PSM coding sequence.

Fig. 6.
Fig. 6.

(a)–(d) Waveforms of the PSM coding sequence (CS1) after transmission in an SMF of 10, 35, 50, and 75 km lengths, respectively. (e) Measured RF spectrum after transmission in a 50 km SMF.

Fig. 7.
Fig. 7.

(a) UWB coding sequence before modulation, (b) UWB coding sequence after PPM, (c) UWB positive doublet OOK modulation, and (d) UWB negative doublet OOK modulation.

Metrics