Abstract

We demonstrate almost octave-spanning cascaded four-wave mixing (CFWM) in optical microfibers. Pumped by two synchronized picosecond lasers at about 850 nm, microfibers with a length of 10–20 cm can generate CFWM spanning from a few hundred nanometers to almost one octave, depending on the diameter of the microfibers and the detuning between the two pumps. CFWM in microfibers, which has the advantages of easy fabrication, highly efficient coupling, relatively short length, and easy integration with fiber systems, can be used for applications in widely tunable multiline phase-sensitive amplification, multiwavelength coherent sources, and ultrashort pulse synthesis.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Tong, C. Lundstrom, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, Nat. Photon. 5, 430 (2011).
    [CrossRef]
  2. M. Westlund, J. Hansryd, P. A. Andrekson, and S. N. Knudsen, Electron. Lett. 38, 85 (2002).
    [CrossRef]
  3. R. D. Li, P. Kumar, and W. L. Kath, J. Lightwave Technol. 12, 541 (1994).
    [CrossRef]
  4. K. Inoue and T. Mukai, J. Lightwave Technol. 20, 969 (2002).
    [CrossRef]
  5. A. Takada and W. Imajuku, Eletron. Lett. 32, 677 (1996).
    [CrossRef]
  6. I. H. Deutsch and I. Abram, J. Opt. Soc. Am. B 11, 2303 (1994).
    [CrossRef]
  7. A. C. Sodre, J. M. C. Boggio, A. A. Rieznik, H. E. Hernandez-Figueroa, H. L. Fragnito, and J. C. Knight, Opt. Express 16, 2816 (2008).
    [CrossRef]
  8. J. Fatome, S. Pitois, and G. Millot, IEEE J. Quantum Electron. 42, 1038 (2006).
    [CrossRef]
  9. R. Weigand, J. T. Mendonça, and H. M. Crespo, Phys. Rev. A 79, 063838 (2009).
    [CrossRef]
  10. P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Phys. Rev. Lett. 107, 063901 (2011).
    [CrossRef]
  11. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, Opt. Lett. 36, 3398 (2011).
    [CrossRef]
  12. G. Brambilla, F. Xu, P. Horak, Y. M. Jung, F. Koizumi, N. P. Sessions, E. Koukharenko, X. Feng, G. S. Murugan, J. S. Wilkinson, and D. J. Richardson, Adv. Opt. Photon. 1, 107 (2009).
    [CrossRef]
  13. L. M. Tong and M. Sumetsky, Subwavelength and Nanometer Diameter Optical Fibers (Zhejiang University-Springer, 2009).
  14. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
    [CrossRef]
  15. M. A. Foster, K. D. Moll, and A. L. Gaeta, Opt. Express 12, 2880 (2004).
    [CrossRef]
  16. A. Coillet, G. Vienne, and P. Grelu, J. Opt. Soc. Am. B 27, 394 (2010).
    [CrossRef]
  17. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett. 25, 1415 (2000).
    [CrossRef]
  18. J. Lou, L. Tong, and Z. Ye, Opt. Express 14, 6993 (2006).
    [CrossRef]
  19. P. Dumais, F. Gonthier, S. Lacroix, J. Bures, A. Villeneuve, P. G. J. Wigley, and G. I. Stegeman, Opt. Lett. 18, 1996 (1993).
    [CrossRef]
  20. M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, Opt. Express 13, 6848 (2005).
    [CrossRef]
  21. L. Shi, X. Chen, H. Liu, Y. Chen, Z. Ye, W. Liao, and Y. Xia, Opt. Express 14, 5055 (2006).
    [CrossRef]
  22. M. Rusu, S. Kivistö, C. Gawith, and O. Okhotnikov, Opt. Express 13, 8547 (2005).
    [CrossRef]
  23. T. A. Birks and Y. W. Li, J. Lightwave Technol. 10, 432 (1992).
    [CrossRef]
  24. L. Tong, J. Lou, and E. Mazur, Opt. Express 12, 1025 (2004).
    [CrossRef]
  25. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

2011 (3)

Z. Tong, C. Lundstrom, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, Nat. Photon. 5, 430 (2011).
[CrossRef]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Phys. Rev. Lett. 107, 063901 (2011).
[CrossRef]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, Opt. Lett. 36, 3398 (2011).
[CrossRef]

2010 (1)

2009 (2)

2008 (1)

2006 (3)

2005 (2)

2004 (2)

2003 (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef]

2002 (2)

M. Westlund, J. Hansryd, P. A. Andrekson, and S. N. Knudsen, Electron. Lett. 38, 85 (2002).
[CrossRef]

K. Inoue and T. Mukai, J. Lightwave Technol. 20, 969 (2002).
[CrossRef]

2000 (1)

1996 (1)

A. Takada and W. Imajuku, Eletron. Lett. 32, 677 (1996).
[CrossRef]

1994 (2)

I. H. Deutsch and I. Abram, J. Opt. Soc. Am. B 11, 2303 (1994).
[CrossRef]

R. D. Li, P. Kumar, and W. L. Kath, J. Lightwave Technol. 12, 541 (1994).
[CrossRef]

1993 (1)

1992 (1)

T. A. Birks and Y. W. Li, J. Lightwave Technol. 10, 432 (1992).
[CrossRef]

Abram, I.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Andrekson, P. A.

Z. Tong, C. Lundstrom, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, Nat. Photon. 5, 430 (2011).
[CrossRef]

M. Westlund, J. Hansryd, P. A. Andrekson, and S. N. Knudsen, Electron. Lett. 38, 85 (2002).
[CrossRef]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef]

Birks, T. A.

Blessing, D. J.

Z. Tong, C. Lundstrom, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, Nat. Photon. 5, 430 (2011).
[CrossRef]

Boggio, J. M. C.

Brambilla, G.

Bures, J.

Cao, Q.

Chen, X.

Chen, Y.

Coillet, A.

Crespo, H. M.

R. Weigand, J. T. Mendonça, and H. M. Crespo, Phys. Rev. A 79, 063838 (2009).
[CrossRef]

Del’Haye, P.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Phys. Rev. Lett. 107, 063901 (2011).
[CrossRef]

Deutsch, I. H.

Dumais, P.

Fatome, J.

J. Fatome, S. Pitois, and G. Millot, IEEE J. Quantum Electron. 42, 1038 (2006).
[CrossRef]

Feng, X.

Foster, M. A.

Fragnito, H. L.

Gaeta, A. L.

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef]

Gavartin, E.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Phys. Rev. Lett. 107, 063901 (2011).
[CrossRef]

Gawith, C.

Gonthier, F.

Gorodetsky, M. L.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Phys. Rev. Lett. 107, 063901 (2011).
[CrossRef]

Grelu, P.

Grüner-Nielsen, L.

Z. Tong, C. Lundstrom, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, Nat. Photon. 5, 430 (2011).
[CrossRef]

Hansryd, J.

M. Westlund, J. Hansryd, P. A. Andrekson, and S. N. Knudsen, Electron. Lett. 38, 85 (2002).
[CrossRef]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef]

Hernandez-Figueroa, H. E.

Herr, T.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Phys. Rev. Lett. 107, 063901 (2011).
[CrossRef]

Holzwarth, R.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Phys. Rev. Lett. 107, 063901 (2011).
[CrossRef]

Horak, P.

Imajuku, W.

A. Takada and W. Imajuku, Eletron. Lett. 32, 677 (1996).
[CrossRef]

Inoue, K.

Jung, Y. M.

Karlsson, M.

Z. Tong, C. Lundstrom, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, Nat. Photon. 5, 430 (2011).
[CrossRef]

Kath, W. L.

R. D. Li, P. Kumar, and W. L. Kath, J. Lightwave Technol. 12, 541 (1994).
[CrossRef]

Kippenberg, T. J.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Phys. Rev. Lett. 107, 063901 (2011).
[CrossRef]

Kivistö, S.

Knight, J. C.

Knudsen, S. N.

M. Westlund, J. Hansryd, P. A. Andrekson, and S. N. Knudsen, Electron. Lett. 38, 85 (2002).
[CrossRef]

Koizumi, F.

Koukharenko, E.

Kumar, P.

R. D. Li, P. Kumar, and W. L. Kath, J. Lightwave Technol. 12, 541 (1994).
[CrossRef]

Lacroix, S.

Levy, J. S.

Li, R. D.

R. D. Li, P. Kumar, and W. L. Kath, J. Lightwave Technol. 12, 541 (1994).
[CrossRef]

Li, Y. W.

T. A. Birks and Y. W. Li, J. Lightwave Technol. 10, 432 (1992).
[CrossRef]

Liao, W.

Lipson, M.

Liu, H.

Lou, J.

J. Lou, L. Tong, and Z. Ye, Opt. Express 14, 6993 (2006).
[CrossRef]

L. Tong, J. Lou, and E. Mazur, Opt. Express 12, 1025 (2004).
[CrossRef]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef]

Lundstrom, C.

Z. Tong, C. Lundstrom, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, Nat. Photon. 5, 430 (2011).
[CrossRef]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef]

Mazur, E.

L. Tong, J. Lou, and E. Mazur, Opt. Express 12, 1025 (2004).
[CrossRef]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef]

McKinstrie, C. J.

Z. Tong, C. Lundstrom, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, Nat. Photon. 5, 430 (2011).
[CrossRef]

Mendonça, J. T.

R. Weigand, J. T. Mendonça, and H. M. Crespo, Phys. Rev. A 79, 063838 (2009).
[CrossRef]

Millot, G.

J. Fatome, S. Pitois, and G. Millot, IEEE J. Quantum Electron. 42, 1038 (2006).
[CrossRef]

Moll, K. D.

Mukai, T.

Murugan, G. S.

Okawachi, Y.

Okhotnikov, O.

Pitois, S.

J. Fatome, S. Pitois, and G. Millot, IEEE J. Quantum Electron. 42, 1038 (2006).
[CrossRef]

Puttnam, B. J.

Z. Tong, C. Lundstrom, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, Nat. Photon. 5, 430 (2011).
[CrossRef]

Richardson, D. J.

Rieznik, A. A.

Russell, P. St. J.

Rusu, M.

Saha, K.

Sessions, N. P.

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef]

Shi, L.

Sodre, A. C.

Stegeman, G. I.

Sumetsky, M.

L. M. Tong and M. Sumetsky, Subwavelength and Nanometer Diameter Optical Fibers (Zhejiang University-Springer, 2009).

Takada, A.

A. Takada and W. Imajuku, Eletron. Lett. 32, 677 (1996).
[CrossRef]

Tipsuwannakul, E.

Z. Tong, C. Lundstrom, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, Nat. Photon. 5, 430 (2011).
[CrossRef]

Toda, H.

Z. Tong, C. Lundstrom, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, Nat. Photon. 5, 430 (2011).
[CrossRef]

Tong, L.

J. Lou, L. Tong, and Z. Ye, Opt. Express 14, 6993 (2006).
[CrossRef]

L. Tong, J. Lou, and E. Mazur, Opt. Express 12, 1025 (2004).
[CrossRef]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef]

Tong, L. M.

L. M. Tong and M. Sumetsky, Subwavelength and Nanometer Diameter Optical Fibers (Zhejiang University-Springer, 2009).

Tong, Z.

Z. Tong, C. Lundstrom, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, Nat. Photon. 5, 430 (2011).
[CrossRef]

Trebino, R.

Vienne, G.

Villeneuve, A.

Wadsworth, W. J.

Weigand, R.

R. Weigand, J. T. Mendonça, and H. M. Crespo, Phys. Rev. A 79, 063838 (2009).
[CrossRef]

Wen, Y. H.

Westlund, M.

M. Westlund, J. Hansryd, P. A. Andrekson, and S. N. Knudsen, Electron. Lett. 38, 85 (2002).
[CrossRef]

Wigley, P. G. J.

Wilkinson, J. S.

Xia, Y.

Xu, F.

Ye, Z.

Adv. Opt. Photon. (1)

Electron. Lett. (1)

M. Westlund, J. Hansryd, P. A. Andrekson, and S. N. Knudsen, Electron. Lett. 38, 85 (2002).
[CrossRef]

Eletron. Lett. (1)

A. Takada and W. Imajuku, Eletron. Lett. 32, 677 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Fatome, S. Pitois, and G. Millot, IEEE J. Quantum Electron. 42, 1038 (2006).
[CrossRef]

J. Lightwave Technol. (3)

R. D. Li, P. Kumar, and W. L. Kath, J. Lightwave Technol. 12, 541 (1994).
[CrossRef]

K. Inoue and T. Mukai, J. Lightwave Technol. 20, 969 (2002).
[CrossRef]

T. A. Birks and Y. W. Li, J. Lightwave Technol. 10, 432 (1992).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nat. Photon. (1)

Z. Tong, C. Lundstrom, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, E. Tipsuwannakul, B. J. Puttnam, H. Toda, and L. Grüner-Nielsen, Nat. Photon. 5, 430 (2011).
[CrossRef]

Nature (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef]

Opt. Express (7)

Opt. Lett. (3)

Phys. Rev. A (1)

R. Weigand, J. T. Mendonça, and H. M. Crespo, Phys. Rev. A 79, 063838 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, Phys. Rev. Lett. 107, 063901 (2011).
[CrossRef]

Other (2)

L. M. Tong and M. Sumetsky, Subwavelength and Nanometer Diameter Optical Fibers (Zhejiang University-Springer, 2009).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Calculated GVD for optical microfibers with a diameter of 1, 2, and 3 μm. The anomalous dispersion ranges are shaded for clarity. (b), (c) Simulated CFWM spectra for optical microfibers with a diameter of 1 and 3 μm and a length of 9 and 16 cm, respectively. The two pumps, denoted by arrows in the figure, are around 850 nm(350THz), and detuned by 3.6 and 9 THz. The microfiber lengths, pump powers, and detunings are chosen to have the largest CFWM spectral span.

Fig. 2.
Fig. 2.

Optical setup for CFWM generation in microfibers. The as-fabricated microfibers are connected with single-mode fiber by two adiabatic tapers, which enable easy and highly efficient coupling for the free-space laser beam, and sealed in a plastic housing. Two synchronized mode-locked picosecond (ps) Ti:sapphire lasers, used as the nondegenerate pumps for CFWM, are combined by a 5050 beam splitter and focused by a 10× objective into the cleaved single-mode fiber end. The optical spectra of CFWM are monitored by an optical spectrum analyzer (OSA).

Fig. 3.
Fig. 3.

Spectra of the CFWM from a 1 μm diameter microfiber with a length of 9 cm, connected with single-mode fiber by a 24 mm long adiabatic taper. Pump conditions are listed in the figure. The repetition rates of both pump pulses are 80 MHz. The peak power of the 2 ps pump is estimated to be 313 W, corresponding to Fig. 1(b). The spectra are shifted vertically for clarity.

Fig. 4.
Fig. 4.

(a) Spectra of CFWM from a 3 μm diameter microfiber with a length of 16 cm. Pump parameters are listed in the figure. The peak power of the 2 ps pump is estimated to be 1.25 kW, corresponding to Fig. 1(c). Extraneous side peaks caused by higher order diffraction of the spectrometer are removed for clarity. (b) Zoomed-in spectrum of (a) at f230THz (1300nm) for Δf=9THz. The arrow-denoted peaks are attributed to CFWM.

Metrics