Abstract

We predict and demonstrate the generation of a plasmonic hot spot on the surface of a metal film by the interference of two Airy surface plasmons. We show that the position of the hot spot can be controlled by the distance between the excitation gratings as well as by the phase front of the initial excitation. The observed effect constitutes a planar analogy to Airy beam autofocusing and offers new opportunities for spatially resolved surface plasmon sensing and optical surface tweezers.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
    [CrossRef]
  2. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chávez-Cerda, Opt. Lett. 25, 1493 (2000).
    [CrossRef]
  3. J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
    [CrossRef]
  4. Y. Lin, W. Seka, J. H. Eberly, H. Huang, and D. L. Brown, Appl. Opt. 31, 2708 (1992).
    [CrossRef]
  5. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
    [CrossRef]
  6. J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, Opt. Express 16, 12880 (2008).
    [CrossRef]
  7. M. V. Berry and N. L. Balazs, Am. J. Phys. 47, 264 (1979).
    [CrossRef]
  8. A. Salandrino and D. N. Christodoulides, Opt. Lett. 35, 2082 (2010).
    [CrossRef]
  9. A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, Phys. Rev. Lett. 107, 116802 (2011).
    [CrossRef]
  10. P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang, Opt. Lett. 36, 3191 (2011).
    [CrossRef]
  11. L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, Phys. Rev. Lett. 107, 126804 (2011).
    [CrossRef]
  12. M. Righini, A. Zelenina, C. Girard, and R. Quidant, Nat. Phys. 3, 477 (2007).
    [CrossRef]
  13. T. S. Kao, S. D. Jenkins, J. Ruostekoski, and N. I. Zheludev, Phys. Rev. Lett. 106, 085501 (2011).
    [CrossRef]
  14. B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, Nat. Photon. 5, 360 (2011).
    [CrossRef]
  15. N. K. Efremidis and D. N. Christodoulides, Opt. Lett. 35, 4045 (2010).
    [CrossRef]

2011 (5)

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, Phys. Rev. Lett. 107, 116802 (2011).
[CrossRef]

P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang, Opt. Lett. 36, 3191 (2011).
[CrossRef]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, Phys. Rev. Lett. 107, 126804 (2011).
[CrossRef]

T. S. Kao, S. D. Jenkins, J. Ruostekoski, and N. I. Zheludev, Phys. Rev. Lett. 106, 085501 (2011).
[CrossRef]

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, Nat. Photon. 5, 360 (2011).
[CrossRef]

2010 (2)

2008 (1)

2007 (2)

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

M. Righini, A. Zelenina, C. Girard, and R. Quidant, Nat. Phys. 3, 477 (2007).
[CrossRef]

2000 (1)

1992 (1)

1987 (2)

J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
[CrossRef]

J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef]

1979 (1)

M. V. Berry and N. L. Balazs, Am. J. Phys. 47, 264 (1979).
[CrossRef]

Aulbach, J.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, Nat. Photon. 5, 360 (2011).
[CrossRef]

Balazs, N. L.

M. V. Berry and N. L. Balazs, Am. J. Phys. 47, 264 (1979).
[CrossRef]

Berry, M. V.

M. V. Berry and N. L. Balazs, Am. J. Phys. 47, 264 (1979).
[CrossRef]

Broky, J.

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, Opt. Express 16, 12880 (2008).
[CrossRef]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

Brown, D. L.

Chávez-Cerda, S.

Chen, Z.

Christodoulides, D. N.

Dogariu, A.

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, Opt. Express 16, 12880 (2008).
[CrossRef]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

Durnin, J.

J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef]

J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
[CrossRef]

Eberly, J. H.

Y. Lin, W. Seka, J. H. Eberly, H. Huang, and D. L. Brown, Appl. Opt. 31, 2708 (1992).
[CrossRef]

J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef]

Efremidis, N. K.

Girard, C.

M. Righini, A. Zelenina, C. Girard, and R. Quidant, Nat. Phys. 3, 477 (2007).
[CrossRef]

Gjonaj, B.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, Nat. Photon. 5, 360 (2011).
[CrossRef]

Gutiérrez-Vega, J. C.

Huang, H.

Iturbe-Castillo, M. D.

Janunts, N.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, Phys. Rev. Lett. 107, 116802 (2011).
[CrossRef]

Jenkins, S. D.

T. S. Kao, S. D. Jenkins, J. Ruostekoski, and N. I. Zheludev, Phys. Rev. Lett. 106, 085501 (2011).
[CrossRef]

Johnson, P. M.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, Nat. Photon. 5, 360 (2011).
[CrossRef]

Kao, T. S.

T. S. Kao, S. D. Jenkins, J. Ruostekoski, and N. I. Zheludev, Phys. Rev. Lett. 106, 085501 (2011).
[CrossRef]

Kivshar, Y. S.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, Phys. Rev. Lett. 107, 116802 (2011).
[CrossRef]

Klein, A. E.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, Phys. Rev. Lett. 107, 116802 (2011).
[CrossRef]

Kuipers, L.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, Nat. Photon. 5, 360 (2011).
[CrossRef]

Lagendijk, A.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, Nat. Photon. 5, 360 (2011).
[CrossRef]

Li, L.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, Phys. Rev. Lett. 107, 126804 (2011).
[CrossRef]

Li, T.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, Phys. Rev. Lett. 107, 126804 (2011).
[CrossRef]

Lin, Y.

Liu, Y.

Lu, C.

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef]

Minovich, A.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, Phys. Rev. Lett. 107, 116802 (2011).
[CrossRef]

Mosk, A. P.

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, Nat. Photon. 5, 360 (2011).
[CrossRef]

Neshev, D. N.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, Phys. Rev. Lett. 107, 116802 (2011).
[CrossRef]

Pertsch, T.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, Phys. Rev. Lett. 107, 116802 (2011).
[CrossRef]

Quidant, R.

M. Righini, A. Zelenina, C. Girard, and R. Quidant, Nat. Phys. 3, 477 (2007).
[CrossRef]

Righini, M.

M. Righini, A. Zelenina, C. Girard, and R. Quidant, Nat. Phys. 3, 477 (2007).
[CrossRef]

Ruostekoski, J.

T. S. Kao, S. D. Jenkins, J. Ruostekoski, and N. I. Zheludev, Phys. Rev. Lett. 106, 085501 (2011).
[CrossRef]

Salandrino, A.

Seka, W.

Siviloglou, G. A.

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, Opt. Express 16, 12880 (2008).
[CrossRef]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

Wang, S.

Wang, S. M.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, Phys. Rev. Lett. 107, 126804 (2011).
[CrossRef]

Yin, X.

Zelenina, A.

M. Righini, A. Zelenina, C. Girard, and R. Quidant, Nat. Phys. 3, 477 (2007).
[CrossRef]

Zhang, C.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, Phys. Rev. Lett. 107, 126804 (2011).
[CrossRef]

Zhang, P.

Zhang, X.

Zheludev, N. I.

T. S. Kao, S. D. Jenkins, J. Ruostekoski, and N. I. Zheludev, Phys. Rev. Lett. 106, 085501 (2011).
[CrossRef]

Zhu, S. N.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, Phys. Rev. Lett. 107, 126804 (2011).
[CrossRef]

Am. J. Phys. (1)

M. V. Berry and N. L. Balazs, Am. J. Phys. 47, 264 (1979).
[CrossRef]

Appl. Opt. (1)

J. Opt. Soc. Am. A (1)

Nat. Photon. (1)

B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers, and A. Lagendijk, Nat. Photon. 5, 360 (2011).
[CrossRef]

Nat. Phys. (1)

M. Righini, A. Zelenina, C. Girard, and R. Quidant, Nat. Phys. 3, 477 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. Lett. (5)

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, Phys. Rev. Lett. 107, 126804 (2011).
[CrossRef]

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, Phys. Rev. Lett. 107, 116802 (2011).
[CrossRef]

J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

T. S. Kao, S. D. Jenkins, J. Ruostekoski, and N. I. Zheludev, Phys. Rev. Lett. 106, 085501 (2011).
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (1220 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Excitation and interference of Airy plasmons. (a) Schematic of the experimental setup with the mirror-symmetric gratings. Rectangular slits are arranged in ten columns per grating with varying width along the x direction. Along the z direction, the gratings comprise 11 periods, and the slits are 200 nm wide. The gratings are illuminated from the substrate side by a broad Gaussian beam with λ=784nm and polarization along z. (b), (c) Absolute value and phase of the amplitude function of the two Airy plasmons. The main lobe half width is x0=700nm. ξ0 (ξ0+) denotes the x coordinate where the argument of the left (right) Airy function becomes zero. (d) Grating geometry for excitation of Airy plasmons. λSPP=764nm denotes the SPP wavelength. The distance between the gratings, d, is measured between ξ0 and ξ0+.

Fig. 2.
Fig. 2.

Square of the modulus of the tangential component of the electric field |Eτ|2, where Eτ is the component of the electric field parallel to the sample plane. (a)–(d) |Eτ|2 calculated by FDTD and evaluated 10 nm above the sample surface. (e)–(h) |Eτ|2 measured by SNOM, for different separation distances. (a),(e) d=1.5μm, (b),(f) d=3.0μm, and (c),(g) d=5.0μm. The illumination intensity |Eτ|2 in the FDTD calculations is 1. (d) and (h) were obtained for a separation distance d=2.5μm and a z shift of half a grating period (out-of-phase excitation). Media 1 shows simulated data for continuously increasing z shift.

Fig. 3.
Fig. 3.

Tangential component of the electric field (|Eτ|2) for tilted illumination. (a) Calculated by FDTD at α=5.0° and (b) measured by SNOM at α=5.3°±0.3°, both for d=2.5μm. The dashed line marks the symmetry axis. The illumination intensity |Eτ|2 in the FDTD calculation is 1.

Metrics