Abstract

In this letter, we demonstrate a refractive index sensor based on a subwavelength plasmon interferometer. Illumination of an atilt subwavelength slit-grove pair on a metal surface with monochromatic light generates high-contrast interference fringes of the transmitted light. Detection of the refractive index of the dielectric medium on the metal surface is based on examining the relative position of the interference fringes. Integration of the plasmon interferometer with a microfluidic channel provides a sensitive, high-throughput sensor with small detection volume.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription