Abstract

An ultracompact polarization beam splitter (PBS) based on a dielectric–hybrid plasmonic–dielectric coupler is proposed. The device utilizes the polarization-dependent nature of hybrid plasmonic waveguides. By choosing proper waveguide parameters, a 2×5.1μm2 PBS (including S-bends) with extinction ratios over 15 dB and insertion losses below 1.5 dB in the full C-band should be achievable. The effect of fabrication errors is also investigated.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Gramotnev and S. I. Bozhevolnyi, Nature Photonics 4, 83 (2010).
    [CrossRef]
  2. O. Benson, Nature 480, 193 (2011).
    [CrossRef]
  3. E. Ozbay, Science 311, 189 (2006).
    [CrossRef]
  4. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nature Photonics 2, 496 (2008).
    [CrossRef]
  5. D. Dai and S. He, Opt. Express 17, 16646 (2009).
    [CrossRef]
  6. D. Dai, J. Bauters, and J. E. Bowers, Light: Sci. Appl. 1, 1 (2012).
    [CrossRef]
  7. D. Dai and J. E. Bowers, Opt. Express 19, 18614 (2011).
    [CrossRef]
  8. X. Ao, L. Liu, L. Wosinski, and S. He, Appl. Phys. Lett. 89, 171115 (2006).
    [CrossRef]
  9. V. Zabelin, L. A. Dunbar, N. Le Thomas, M. V. Kotlyar, and T. F. Krauss, Opt. Lett. 32, 530 (2007).
    [CrossRef]
  10. D. Dai, Z. Wang, J. Peters, and J. E. Bowers, IEEE Photon. Technol. Lett. 24, 673 (2012).
    [CrossRef]
  11. A. Hosseini, S. Rahimi, X. Xu, D. Kwong, J. Covey, and R. T. Chen, Opt. Lett. 36, 4047 (2011).
    [CrossRef]
  12. Y. Chang and W. Li, IEEE Photon. Technol. Lett. 24, 458 (2012).
    [CrossRef]
  13. M. Z. Alam, J. S. Aitchsion, and M. Mojahedi, Appl. Opt. 50, 2294 (2011).
    [CrossRef]
  14. C.-L. Zou, F.-W. Sun, C.-H. Dong, X.-F. Ren, J.-M. Cui, X.-D. Chen, Z.-F. Han, and G.-C. Guo, Opt. Lett. 36, 3630 (2011).
    [CrossRef]
  15. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  16. J. P. Donnelly, H. A. Haus, and N. Whitaker, IEEE J. Quantum Electron. 23, 401 (1987).
    [CrossRef]
  17. K. Saitoh, Y. Sato, and M. Koshiba, Opt. Express 12, 3940 (2004).
    [CrossRef]

2012

D. Dai, J. Bauters, and J. E. Bowers, Light: Sci. Appl. 1, 1 (2012).
[CrossRef]

D. Dai, Z. Wang, J. Peters, and J. E. Bowers, IEEE Photon. Technol. Lett. 24, 673 (2012).
[CrossRef]

Y. Chang and W. Li, IEEE Photon. Technol. Lett. 24, 458 (2012).
[CrossRef]

2011

2010

D. K. Gramotnev and S. I. Bozhevolnyi, Nature Photonics 4, 83 (2010).
[CrossRef]

2009

2008

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nature Photonics 2, 496 (2008).
[CrossRef]

2007

2006

E. Ozbay, Science 311, 189 (2006).
[CrossRef]

X. Ao, L. Liu, L. Wosinski, and S. He, Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

2004

1987

J. P. Donnelly, H. A. Haus, and N. Whitaker, IEEE J. Quantum Electron. 23, 401 (1987).
[CrossRef]

Aitchsion, J. S.

Alam, M. Z.

Ao, X.

X. Ao, L. Liu, L. Wosinski, and S. He, Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

Bauters, J.

D. Dai, J. Bauters, and J. E. Bowers, Light: Sci. Appl. 1, 1 (2012).
[CrossRef]

Benson, O.

O. Benson, Nature 480, 193 (2011).
[CrossRef]

Bowers, J. E.

D. Dai, J. Bauters, and J. E. Bowers, Light: Sci. Appl. 1, 1 (2012).
[CrossRef]

D. Dai, Z. Wang, J. Peters, and J. E. Bowers, IEEE Photon. Technol. Lett. 24, 673 (2012).
[CrossRef]

D. Dai and J. E. Bowers, Opt. Express 19, 18614 (2011).
[CrossRef]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, Nature Photonics 4, 83 (2010).
[CrossRef]

Chang, Y.

Y. Chang and W. Li, IEEE Photon. Technol. Lett. 24, 458 (2012).
[CrossRef]

Chen, R. T.

Chen, X.-D.

Covey, J.

Cui, J.-M.

Dai, D.

D. Dai, Z. Wang, J. Peters, and J. E. Bowers, IEEE Photon. Technol. Lett. 24, 673 (2012).
[CrossRef]

D. Dai, J. Bauters, and J. E. Bowers, Light: Sci. Appl. 1, 1 (2012).
[CrossRef]

D. Dai and J. E. Bowers, Opt. Express 19, 18614 (2011).
[CrossRef]

D. Dai and S. He, Opt. Express 17, 16646 (2009).
[CrossRef]

Dong, C.-H.

Donnelly, J. P.

J. P. Donnelly, H. A. Haus, and N. Whitaker, IEEE J. Quantum Electron. 23, 401 (1987).
[CrossRef]

Dunbar, L. A.

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nature Photonics 2, 496 (2008).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, Nature Photonics 4, 83 (2010).
[CrossRef]

Guo, G.-C.

Han, Z.-F.

Haus, H. A.

J. P. Donnelly, H. A. Haus, and N. Whitaker, IEEE J. Quantum Electron. 23, 401 (1987).
[CrossRef]

He, S.

D. Dai and S. He, Opt. Express 17, 16646 (2009).
[CrossRef]

X. Ao, L. Liu, L. Wosinski, and S. He, Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

Hosseini, A.

Koshiba, M.

Kotlyar, M. V.

Krauss, T. F.

Kwong, D.

Le Thomas, N.

Li, W.

Y. Chang and W. Li, IEEE Photon. Technol. Lett. 24, 458 (2012).
[CrossRef]

Liu, L.

X. Ao, L. Liu, L. Wosinski, and S. He, Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

Mojahedi, M.

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nature Photonics 2, 496 (2008).
[CrossRef]

Ozbay, E.

E. Ozbay, Science 311, 189 (2006).
[CrossRef]

Peters, J.

D. Dai, Z. Wang, J. Peters, and J. E. Bowers, IEEE Photon. Technol. Lett. 24, 673 (2012).
[CrossRef]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nature Photonics 2, 496 (2008).
[CrossRef]

Rahimi, S.

Ren, X.-F.

Saitoh, K.

Sato, Y.

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nature Photonics 2, 496 (2008).
[CrossRef]

Sun, F.-W.

Wang, Z.

D. Dai, Z. Wang, J. Peters, and J. E. Bowers, IEEE Photon. Technol. Lett. 24, 673 (2012).
[CrossRef]

Whitaker, N.

J. P. Donnelly, H. A. Haus, and N. Whitaker, IEEE J. Quantum Electron. 23, 401 (1987).
[CrossRef]

Wosinski, L.

X. Ao, L. Liu, L. Wosinski, and S. He, Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

Xu, X.

Zabelin, V.

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nature Photonics 2, 496 (2008).
[CrossRef]

Zou, C.-L.

Appl. Opt.

Appl. Phys. Lett.

X. Ao, L. Liu, L. Wosinski, and S. He, Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

IEEE J. Quantum Electron.

J. P. Donnelly, H. A. Haus, and N. Whitaker, IEEE J. Quantum Electron. 23, 401 (1987).
[CrossRef]

IEEE Photon. Technol. Lett.

D. Dai, Z. Wang, J. Peters, and J. E. Bowers, IEEE Photon. Technol. Lett. 24, 673 (2012).
[CrossRef]

Y. Chang and W. Li, IEEE Photon. Technol. Lett. 24, 458 (2012).
[CrossRef]

Light: Sci. Appl.

D. Dai, J. Bauters, and J. E. Bowers, Light: Sci. Appl. 1, 1 (2012).
[CrossRef]

Nature

O. Benson, Nature 480, 193 (2011).
[CrossRef]

Nature Photonics

D. K. Gramotnev and S. I. Bozhevolnyi, Nature Photonics 4, 83 (2010).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nature Photonics 2, 496 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Science

E. Ozbay, Science 311, 189 (2006).
[CrossRef]

Other

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the proposed PBS.

Fig. 2.
Fig. 2.

Five supermodes supported in the three-core coupler at 1550 nm. (a), (b), and (c) are the Ey field profiles for the 1st symmetric, 2nd symmetric, and antisymmetric TM supermodes; (d) and (e) are the Ex field profiles for even and odd TE supermodes.

Fig. 3.
Fig. 3.

Effective indices of five supermodes guided in the three-core coupler as functions of hd when g=100nm. The maximum coupling efficiency of TM polarized light can be achieved when hd=78nm, i.e., nTM3=(nTM1+nTM2)/2.

Fig. 4.
Fig. 4.

(a) hd as a function of g; (b) LTM and LTE/LTM as functions of g.

Fig. 5.
Fig. 5.

Field distributions at 1.55 μm. (a) TM input; (b) TE input.

Fig. 6.
Fig. 6.

Spectral responses of the proposed PBS. (a) Normalized power at port 2 and port 3 when slot height is hd=78nm; (b) Normalized power at port 2 and port 3 when slot height is hd±Δh, where Δh=10nm is the fabrication error.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

LTE=λ02(nTE1nTE2)=λ02ΔnTE,
nTE1+nTE2=2nTE3,
LTM=λ02(nTM1nTM3)=λ02ΔnTM.

Metrics